1. (20 points +10 points extra credit) Write regular expressions that generate each of the languages below. For each language, the alphabet, $\Sigma$, is $\{0,1\}$.
(a) $A_{1}=\{s \mid s$ contains the substring 1011$\}$.
(b) $A_{2}=\{s| | s \mid=5 m+7 n$ with $m, n \in \mathbb{N}\}$.
(c) $A_{3}=\{s \mid s$ contains an even number of 0 's $\}$.
(d) $A_{4}=\{s \mid s$ contains an odd number of 1's $\}$.
(e) (10 points extra credit):
$A_{5}=\{s \mid s$ contains an even number of 0's and an odd number of 1's $\}$.
2. ( $\mathbf{3 0}$ points) In the problems below, let $R_{1}, R_{2}, \ldots$ be arbitrary regular expressions over an arbitrary finite alphabet. For each proposed identity, either prove it, or give a counter-example. Two are valid identities for which a correct proof is worth 10 points; two are not valid identities for which a counter-example is worth 5 points.
(a) $R_{1} \cup \epsilon=R_{1}$.
(b) $R_{1} R_{1}^{*}=R_{1}^{*} R_{1}$.
(c) $R_{1} \cdot\left(R_{2} \cup R_{3}\right)=\left(R_{1} \cdot R_{2}\right) \cup\left(R_{1} \cdot R_{3}\right)$.
(d) $R_{1} \cup\left(R_{2} \cdot R_{3}\right)=\left(R_{1} \cup R_{2}\right) \cdot\left(R_{1} \cup R_{3}\right)$.
3. (20 points) For any language, $A$, let

$$
A^{\mathcal{R}}=\left\{s \mid s^{\mathcal{R}} \in A\right\}
$$

where $s^{\mathcal{R}}$ is the reverse of $s$ as defined in homework 0 :

$$
\begin{aligned}
\epsilon^{\mathcal{R}} & =\epsilon \\
(x \cdot c)^{\mathcal{R}} & =c \cdot x^{\mathcal{R}}
\end{aligned}
$$

Prove that if $A$ is regular, then so is $A^{\mathcal{R}}$.
4. (40 points): For each language below, determine whether or not the language is regular. If it is regular, draw a DFA that accepts it and write a short explanation of how your DFA works. If it is not regular, provide a proof. For each language, the alphabet, $\Sigma$, is $\{0,1\}$. The notation $\# 0(s)$ refers to the number of $\# 0$ 's in $s$, and $\# 1(s)$ refers to the number of $\# 1$ 's.
(a) $B_{1}=\{s \mid s$ contains an even number of 0's and an odd number of 1's $\}$.
(b) $B_{2}=\{s \mid \# 1(s)=k * \# 0(s)$ for some $k \in \mathbb{N}\}$.
(c) $B_{3}=\{s \mid(|\# 0(s)-\# 1(s)| \bmod 3)=0\}$.
(d) $B_{4}=\{s \mid(|\# 0(s)-\# 1(s)| \bmod 3)=1\}$.

