1. (20 points +10 points extra credit) Write regular expressions that generate each of the languages below. For each language, the alphabet, Σ, is $\{0,1\}$.
(a) $A_{1}=\{s \mid s$ contains the substring 1011$\}$.

Solution: $\Sigma^{*} 1011 \Sigma^{*}$
(b) $A_{2}=\{s| | s \mid=5 m+7 n$ with $m, n \in \mathbb{N}\}$.

Solution: $\left(\Sigma^{5}\right)^{*}\left(\Sigma^{7}\right)^{*}$, where $\Sigma^{5}=\Sigma \Sigma \Sigma \Sigma \Sigma$ and likewise for Σ^{7}.
(c) $A_{3}=\{s \mid s$ contains an even number of 0 's $\}$.

Solution: $1^{*}\left(01^{*} 0\right)^{*} 1^{*}$
(d) $A_{4}=\{s \mid s$ contains an odd number of 1's $\}$.

Solution: $0^{*} 10^{*}\left(10^{*} 1\right)^{*} 0^{*}$
(e) (10 points extra credit):
$A_{5}=\{s \mid s$ contains an even number of 0's and an odd number of 1's $\}$.

Solution:

```
Here's a DFA that recognizes the language
(q0 is th initial state, q$ is the accepting state).
    q0 -e-> q00
    q00 -0-> q01, q00 -1-> q10
    q01 -0-> q00, q01 -1-> q11
    q10 -0-> q11, q10 -1-> q00
    q11 -0-> q10, q10 -1-> q01
    q10 -e-> q$
This DFA is a GNFA and we use the procedure from the
Sept. 19 lecture notes:
delete q11:
    q0 -e-> q00
    q00 -0-> q01, q00 -1-> q10
    q01 -0-> q00, q01 -11-> q01, q01 -10-> q10
    q10 -00-> q10, q10 -01-> q01, q10 -1-> q00
    q10 -e-> q$
delete q01:
    q0 -e-> q00
    q00 -0(11)^*0-> q00,
    q00 -(0(11)^*10 U 1)-> q10,
    q10 -(1 U 01(11)^*0) -> q00,
    q10 -(00 U 01(11)^*10)-> q10,
    q10 -e-> q$
delete q00:
    q0 - (0(11)^*0)^*(1 U 01(11)^*0) -> q10,
    q10 - (00 U 01(11)^*10 U (1 U 01(11)^*0) (0(11)^*0)^* (1 U 0(11)^*10) -> q10,
    -> q10,
    q10 -e-> q$
Let r0 = 0(11)^*0
```

```
        r1 = (1 U 01(11)^*0)
Then, we've got
    q0 -(r0^*r1)-> q10,
    q10 -(r0 U r1(r0^*)r1)-> q10,
    q10 -e-> q$
Now, we eliminate q10 to get
    q0 -((r0^*r1)(r0 U r1(r0^*)r1)^*) -> q$
Thus, our solution is:
    (r0^*r1) (r0 U r1(r0^*)r1)^*
    with r0 = 0(11)^*0 and r1 = (1 U 01(11)^*0) as defined above.
```

I'll work on prettier typesetting later.
2. (30 points) In the problems below, let R_{1}, R_{2}, \ldots be arbitrary regular expressions over an arbitrary finite alphabet. For each proposed identity, either prove it, or give a counter-example. Two are valid identities for which a correct proof is worth 10 points; two are not valid identities for which a counter-example is worth 5 points.
(a) $R_{1} \cup \epsilon=R_{1}$.

Solution:

False. Let $R_{1}=0$. Then $\epsilon \in R_{1} \cup \epsilon$ but $\epsilon \notin R_{1}$, and therefore $R_{1} \cup \epsilon \neq R_{1}$.
(b) $R_{1} R_{1}^{*}=R_{1}^{*} R_{1}$.

Solution:

True. Using the definitions of concatenation and Kleen-star, $R_{1} R_{1}^{*}=\left\{x y \mid x \in R_{1}, y \in R_{1}^{*}\right\}$ and $R_{1}^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0, x_{i} \in R_{1} \forall i\right\}$ therefore,

$$
\begin{aligned}
R_{1} R_{1}^{*} & =\left\{x x_{1} \ldots x_{k} \mid x \in R_{1}, k \geq 0, x_{i} \in R_{1} \forall i\right\} \\
& =\left\{x_{1} x_{2} \ldots x_{k+1} \mid k \geq 0, x_{i} \in R_{1} \forall i\right\} \\
& =\left\{x_{1} \ldots x_{k} x \mid x \in R_{1}, k \geq 0, x_{i} \in R_{1} \forall i\right\} \\
& =\left\{y x \mid x \in R_{1}, y \in R_{1}^{*}\right\} \\
& =R_{1}^{*} R_{1}
\end{aligned}
$$

(c) $R_{1} \cdot\left(R_{2} \cup R_{3}\right)=\left(R_{1} \cdot R_{2}\right) \cup\left(R_{1} \cdot R_{3}\right)$.

Solution:

True. $R_{1}\left(R_{2} \cup R_{3}\right)=\left\{x y \mid x \in R_{1}, y \in\left(R_{2} \cup R_{3}\right)\right\}=\left\{x y \mid x \in R_{1}, y \in R_{2} \vee y \in R_{3}\right\}$.
$\left(R_{1} R_{2}\right) \cup\left(R_{1} R_{3}\right)=\left\{x \mid x \in\left(R_{1} R_{2}\right) \vee x \in\left(R_{1} R_{3}\right)\right\}=\left\{x y \mid\left(x \in R_{1} \wedge y \in R_{2}\right) \vee\left(x \in R_{1} \wedge y \in\right.\right.$ $\left.\left.R_{3}\right)\right\}=\left\{x y \mid x \in R_{1}, y \in R_{2} \vee y \in R_{3}\right\}$.
(d) $R_{1} \cup\left(R_{2} \cdot R_{3}\right)=\left(R_{1} \cup R_{2}\right) \cdot\left(R_{1} \cup R_{3}\right)$.

Solution:

False. Let $R_{1}=R_{2}=R_{3}=0$. Then $R_{1} \cup\left(R_{2} \cdot R_{3}\right)=\{0,00\} \neq\{00\}=\left(R_{1} \cup R_{2}\right) \cdot\left(R_{1} \cup R_{3}\right)$.
3. (20 points) For any language, A, let

$$
A^{\mathcal{R}}=\left\{s \mid s^{\mathcal{R}} \in A\right\}
$$

where $s^{\mathcal{R}}$ is the reverse of s as defined in homework 0 :

$$
\begin{aligned}
\epsilon^{\mathcal{R}} & =\epsilon \\
(x \cdot c)^{\mathcal{R}} & =c \cdot x^{\mathcal{R}}
\end{aligned}
$$

Prove that if A is regular, then so is $A^{\mathcal{R}}$.

Solution: Construct an NFA for $A^{\mathcal{R}}$.
Because A is regular, we can represent it with an DFA. If we reverse the arcs between states and swap the start and accepting states, we get an NFA that recognizes $A^{\mathcal{R}}$. In the stuff that follows, I'll formalize this description, take care of a few technical details, and then prove that it works as advertised.
A is an regular language. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an DFA such that $L(M)=A$. Choose q_{x} such that $q_{x} \notin Q$ (i.e. q_{x} is a new state), and let $N=\left(Q \cup\left\{q_{x}\right\}, \Sigma, \delta^{\mathcal{R}}, q_{x},\left\{q_{0}\right\}\right)$, where

$$
\begin{aligned}
\delta^{\mathcal{R}}(q, c) & =\{p \mid \delta(p, c)=q\}, & & \text { reverse the arcs, } q \neq q_{x} \\
\delta^{\mathcal{R}}\left(q_{x}, \epsilon\right) & =F, & & \text { start with an } \epsilon \text { move to a final state of } M \\
\delta^{\mathcal{R}}\left(q_{x}, c\right) & =\emptyset, & & \text { force that initial } \epsilon \text { move }
\end{aligned}
$$

I'll now prove that $L(N)=A^{\mathcal{R}}$. Because N is an NFA, $L(N)$ is regular. Thus, this will show that $A^{\mathcal{R}}$ is regular.
The key to the proof is that after reading some string, $w^{\mathcal{R}}$, the set of possible states of N are exactly those states from which M could read w and reach an accepting state. The proof is by induction on w.
Induction Hypothesis: $p \in\left(\delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, w^{\mathcal{R}}\right) \cap Q\right) \Leftrightarrow \delta(p, w) \in F$.
Base case, $w=\epsilon$:

$$
\begin{array}{lll}
& p \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, w^{\mathcal{R}}\right) \cap Q & \\
\Leftrightarrow & p \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, \epsilon^{\mathcal{R}}\right) \cap Q, & w=\epsilon \\
\Leftrightarrow & p \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, \epsilon\right) \cap Q, & \epsilon=\epsilon^{\mathcal{R}} \\
\Leftrightarrow & p \in\left(\left\{q_{x}\right\} \cup F\right) \cap Q, & \text { For any set, } B, \delta^{\mathcal{R}}(B, \epsilon)=B \\
\Leftrightarrow & (p \in F) & (F \subseteq Q) \wedge\left(q_{x} \notin Q\right) \\
\Leftrightarrow & \delta(p, \epsilon)=\epsilon F, & \text { For any state, } q, \delta(q, \epsilon)=q
\end{array}
$$

I showed all of the steps for completeness. It would be sufficient to write:

$$
\begin{aligned}
& p \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, \epsilon\right) \cap Q \\
\Leftrightarrow & p \in F \\
\Leftrightarrow & \delta(p, \epsilon) \in F
\end{aligned}
$$

Induction step, $w=\mathbf{c} \cdot x$: Noting that $(\mathbf{c} \cdot x)^{\mathcal{R}}=x^{\mathcal{R}} \cdot \mathbf{c}$, we need to prove

$$
\begin{array}{lcl}
& p \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, x^{\mathcal{R}} \cdot \mathbf{c}\right) & \\
\Leftrightarrow & \exists r \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, x^{\mathcal{R}}\right) \cdot p \in \delta^{\mathcal{R}}(r, c), & \text { def. } \delta^{\mathcal{R}} \text { for strings } \\
\Leftrightarrow & \exists r \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, x^{\mathcal{R}}\right) \cdot \delta(p, c)=r, & \text { def. } \delta^{\mathcal{R}} \text { for symbols } \\
\Leftrightarrow & \delta(p, c) \in \delta^{\mathcal{R}}\left(\left\{q_{x}\right\}, x^{\mathcal{R}}\right) & \\
\Leftrightarrow & \delta(\delta(p, c), x) \in F, & \text { induction hypothesis } \\
\Leftrightarrow & \delta(p, c \cdot x) \in F, & \text { def. } \delta \text { for strings }
\end{array}
$$

Intuitively, what this argument says is that if N can reach some state, p, by reading $x^{\mathcal{R}} \cdot c$; then it did it by first reaching some state, r, by reading $x^{\mathcal{R}}$, and then got to state p by reading c. We then take advantage that $\delta^{\mathcal{R}}$ is the reversal of δ. Thus, M will go from p to r by reading c. Finally, we use the induction hypothesis with r and x to conclude that M will go from r to some state in F by reading x. I will accept an intuitive argument like this one, or the mathematical version that I stated first.
4. (40 points): For each language below, determine whether or not the language is regular. If it is regular, draw a DFA that accepts it and write a short explanation of how your DFA works. If it is not regular, provide a proof. For each language, the alphabet, Σ, is $\{0,1\}$. The notation $\# 0(s)$ refers to the number of $\# 0$'s in s, and $\# 1(s)$ refers to the number of $\# 1$'s.

Figure 1: The 4 states represent the parity of the number of 0 s and the parity of the number of 1 s seen so far: (even, even); (odd, even); (even, odd); (odd, odd).
(a) $B_{1}=\{s \mid s$ contains an even number of 0 's and an odd number of 1 's $\}$.

Solution: (see DFA in Figure 1)
B_{1} is regular:
(b) $B_{2}=\{s \mid \# 1(s)=k * \# 0(s)$ for some $k \in \mathbb{N}\}$. Solution:
B_{2} is not regular: Let p be a proposed pumping lemma constant, and let $w=0^{p} 1^{p} \in B_{2}$. For any $x y z=w$ with $|x y| \leq p, x y^{2} z=0^{p+|y|} 1^{p}$ has more 0 s than 1 s , and therefore is not in B_{2}. It follows by the pumping lemma that B_{2} is not regular.
(c) $B_{3}=\{s \mid(|\# 0(s)-\# 1(s)| \bmod 3)=0\}$.

Solution: (see DFA in Figure 2)
B_{3} is regular:

Figure 2: The 3 states track the value of the number of 0 s seen thus far minus the number of 1 s seen so far mod 3 .
(d) $B_{4}=\{s \mid(|\# 0(s)-\# 1(s)| \bmod 3)=1\}$.

Solution:

B_{4} is not regular: Let p be a proposed pumping lemma constant, and let $w=0^{p} 1^{p+1} \in B_{4}$. For any $x y z=w$ with $|x y| \leq p$, we consider three cases:

$$
|y|= \begin{cases}3 k, & k \geq 1 \\ 3 k+1, & k \geq 0 \\ 3 k+2, & k \geq 0\end{cases}
$$

If $|y|=3 k$, then $x y^{2} z=w$ has $\# 0(w)=p+3 k$ and $\# 1(w)=p+1$, so $|\# 0(w)-\# 1(w)| \quad(\bmod 3)=$ $|p+3 k-(p+1)| \quad(\bmod 3)=2$ and $w \notin B_{4}$.
If $|y|=3 k+1$, then $x y^{2} z=w$ has $\# 0(w)=p+3 k+1$ and $\# 1(w)=p+1$, so $|\# 0(w)-\# 1(w)|$ $(\bmod 3)=|p+3 k+1-(p+1)| \quad(\bmod 3)=0$ and $w \notin B_{4}$.
If $|y|=3 k+2$, then $x y^{3} z=w$ has $\# 0(w)=p+6 k+4$ and $\# 1(w)=p+1$, so $|\# 0(w)-\# 1(w)|$ $(\bmod 3)=|p+6 k+4-(p+1)| \quad(\bmod 3)=0$ and $w \notin B_{4}$.
Therefore, B_{4} is not regular by the pumping lemma.

