
CpSc 421 Homework 2 Due: Sept. 26

1. (20 points +10 points extra credit) Write regular expressions that generate each of the languages below. For
each language, the alphabet,Σ, is {0, 1}.

(a) A1 = {s | s contains the substring1011 }.

Solution: Σ∗1011 Σ∗

(b) A2 = {s | |s| = 5m + 7n with m, n ∈ N}.

Solution: (Σ5)∗(Σ7)∗, whereΣ5 = ΣΣΣΣΣ and likewise forΣ7.

(c) A3 = {s | s contains an even number of0’s}.

Solution: 1∗(01∗0)∗1∗

(d) A4 = {s | s contains an odd number of1’s}.

Solution: 0∗10∗(10∗1)∗0∗

(e) (10 points extra credit):
A5 = {s | s contains an even number of0’s and an odd number of1’s}.

Solution:
Here’s a DFA that recognizes the language
(q0 is th initial state, q$ is the accepting state).

q0 -e-> q00
q00 -0-> q01, q00 -1-> q10
q01 -0-> q00, q01 -1-> q11
q10 -0-> q11, q10 -1-> q00
q11 -0-> q10, q10 -1-> q01
q10 -e-> q$

This DFA is a GNFA and we use the procedure from the
Sept. 19 lecture notes:

delete q11:
q0 -e-> q00
q00 -0-> q01, q00 -1-> q10
q01 -0-> q00, q01 -11-> q01, q01 -10-> q10
q10 -00-> q10, q10 -01-> q01, q10 -1-> q00
q10 -e-> q$

delete q01:
q0 -e-> q00
q00 -0(11)ˆ*0-> q00,
q00 -(0(11)ˆ*10 U 1)-> q10,
q10 -(1 U 01(11)ˆ*0)-> q00,
q10 -(00 U 01(11)ˆ*10)-> q10,
q10 -e-> q$

delete q00:
q0 -(0(11)ˆ*0)ˆ*(1 U 01(11)ˆ*0) -> q10,
q10 -(00 U 01(11)ˆ*10 U (1 U 01(11)ˆ*0) (0(11)ˆ*0)ˆ* (1 U 0(11 )ˆ*10)-> q10,
-> q10,
q10 -e-> q$

Let r0 = 0(11)ˆ*0



r1 = (1 U 01(11)ˆ*0)

Then, we’ve got
q0 -(r0ˆ*r1)-> q10,
q10 -(r0 U r1(r0ˆ*)r1)-> q10,
q10 -e-> q$

Now, we eliminate q10 to get
q0 -((r0ˆ*r1)(r0 U r1(r0ˆ*)r1)ˆ*)-> q$

Thus, our solution is:
(r0ˆ*r1) (r0 U r1(r0ˆ*)r1)ˆ*
with r0 = 0(11)ˆ*0 and r1 = (1 U 01(11)ˆ*0) as defined above.

I’ll work on prettier typesetting later.

2. (30 points) In the problems below, letR1, R2, . . . be arbitrary regular expressions over an arbitrary finite alpha-
bet. For each proposed identity, either prove it, or give a counter-example. Two are valid identities for which a
correct proof is worth 10 points; two are not valid identities for which a counter-example is worth 5 points.

(a) R1 ∪ ǫ = R1.
Solution:
False. LetR1 = 0. Thenǫ ∈ R1 ∪ ǫ but ǫ /∈ R1, and thereforeR1 ∪ ǫ 6= R1.

(b) R1R
∗
1 = R∗

1R1.
Solution:
True. Using the definitions of concatenation and Kleen-star, R1R

∗
1 = {xy|x ∈ R1, y ∈ R∗

1}
andR∗

1 = {x1x2 . . . xk|k ≥ 0, xi ∈ R1∀i} therefore,

R1R
∗
1 = {xx1 . . . xk|x ∈ R1, k ≥ 0, xi ∈ R1∀i}

= {x1x2 . . . xk+1|k ≥ 0, xi ∈ R1∀i}
= {x1 . . . xkx|x ∈ R1, k ≥ 0, xi ∈ R1∀i}
= {yx|x ∈ R1, y ∈ R∗

1}
= R∗

1R1

(c) R1 · (R2 ∪ R3) = (R1 · R2) ∪ (R1 · R3).
Solution:
True.R1(R2 ∪ R3) = {xy|x ∈ R1, y ∈ (R2 ∪ R3)} = {xy|x ∈ R1, y ∈ R2 ∨ y ∈ R3}.
(R1R2) ∪ (R1R3) = {x|x ∈ (R1R2) ∨ x ∈ (R1R3)} = {xy|(x ∈ R1 ∧ y ∈ R2) ∨ (x ∈ R1 ∧ y ∈
R3)} = {xy|x ∈ R1, y ∈ R2 ∨ y ∈ R3}.

(d) R1 ∪ (R2 · R3) = (R1 ∪ R2) · (R1 ∪ R3).
Solution:
False. LetR1 = R2 = R3 = 0. ThenR1 ∪ (R2 · R3) = {0, 00} 6= {00} = (R1 ∪ R2) · (R1 ∪ R3).

3. (20 points) For any language,A, let
AR = {s | sR ∈ A}

wheresR is thereverse of s as defined in homework 0:

ǫR = ǫ
(x · c)R = c · xR

Prove that ifA is regular, then so isAR.



Solution: Construct an NFA forAR.
BecauseA is regular, we can represent it with an DFA. If we reverse the arcs between states and swap the
start and accepting states, we get an NFA that recognizesAR. In the stuff that follows, I’ll formalize this
description, take care of a few technical details, and then prove that it works as advertised.

A is an regular language. LetM = (Q, Σ, δ, q0, F ) be an DFA such thatL(M) = A. Chooseqx such that
qx 6∈ Q (i.e.qx is a new state), and letN = (Q ∪ {qx}, Σ, δR, qx, {q0}), where

δR(q, c) = {p| δ(p, c) = q}, reverse the arcs, q 6= qx

δR(qx, ǫ) = F, start with anǫ move to a final state ofM
δR(qx, c) = ∅, force that initialǫ move

I’ll now prove thatL(N) = AR. BecauseN is an NFA,L(N) is regular. Thus, this will show thatAR is
regular.

The key to the proof is that after reading some string,wR, the set of possible states ofN are exactly those
states from whichM could readw and reach an accepting state. The proof is by induction onw.

Induction Hypothesis:p ∈ (δR({qx}, w
R) ∩ Q) ⇔ δ(p, w) ∈ F .

Base case,w = ǫ:

p ∈ δR({qx}, w
R) ∩ Q

⇔ p ∈ δR({qx}, ǫR) ∩ Q, w = ǫ
⇔ p ∈ δR({qx}, ǫ) ∩ Q, ǫ = ǫR

⇔ p ∈ ({qx} ∪ F ) ∩ Q, For any set,B, δR(B, ǫ) = B
⇔ (p ∈ F ) (F ⊆ Q) ∧ (qx 6∈ Q)
⇔ δ(p, ǫ) =∈ F, For any state,q, δ(q, ǫ) = q
�

I showed all of the steps for completeness. It would be sufficient to write:

p ∈ δR({qx}, ǫ) ∩ Q
⇔ p ∈ F
⇔ δ(p, ǫ) ∈ F

Induction step,w = c · x: Noting that(c · x)R = xR · c, we need to prove

p ∈ δR({qx}, xR · c)
⇔ ∃r ∈ δR({qx}, xR). p ∈ δR(r, c), def.δR for strings
⇔ ∃r ∈ δR({qx}, xR). δ(p, c) = r, def.δR for symbols
⇔ δ(p, c) ∈ δR({qx}, xR)
⇔ δ(δ(p, c), x) ∈ F, induction hypothesis
⇔ δ(p, c · x) ∈ F, def.δ for strings

Intuitively, what this argument says is that ifN can reach some state,p, by readingxR · c; then it did
it by first reaching some state,r, by readingxR, and then got to statep by readingc. We then take
advantage thatδR is the reversal ofδ. Thus,M will go from p to r by readingc. Finally, we use the
induction hypothesis withr andx to conclude thatM will go from r to some state inF by readingx.
I will accept an intuitive argument like this one, or the mathematical version that I stated first.

4. (40 points): For each language below, determine whether or not the language is regular. If it is regular, draw a
DFA that accepts it and write ashort explanation of how your DFA works. If it is not regular, provide a proof.
For each language, the alphabet,Σ, is{0, 1}. The notation#0(s) refers to the number of#0’s in s, and#1(s)
refers to the number of#1’s.



Figure 1: The4 states represent the parity of the number of0s and the parity of the number of1s seen so far: (even,
even); (odd, even); (even, odd); (odd, odd).

(a) B1 = {s | s contains an even number of0’s and an odd number of1’s}.
Solution: (see DFA in Figure 1)
B1 is regular:

(b) B2 = {s | #1(s) = k ∗ #0(s) for somek ∈ N}. Solution:
B2 is not regular: Letp be a proposed pumping lemma constant, and letw = 0p1p ∈ B2. For anyxyz = w
with |xy| ≤ p, xy2z = 0p+|y|1p has more0s than1s, and therefore is not inB2. It follows by the pumping
lemma thatB2 is not regular.

(c) B3 = {s | (|#0(s) − #1(s)| mod 3) = 0}.
Solution: (see DFA in Figure 2)
B3 is regular:

Figure 2: The 3 states track the value of the number of 0s seen thus far minus the number of 1s seen so far mod 3.

(d) B4 = {s | (|#0(s) − #1(s)| mod 3) = 1}.
Solution:
B4 is not regular: Letp be a proposed pumping lemma constant, and letw = 0p1p+1 ∈ B4. For any
xyz = w with |xy| ≤ p, we consider three cases:



|y| =







3k, k ≥ 1
3k + 1, k ≥ 0
3k + 2, k ≥ 0

If |y| = 3k, thenxy2z = w has#0(w) = p+3k and#1(w) = p+1, so|#0(w)−#1(w)| (mod 3) =
|p + 3k − (p + 1)| (mod 3) = 2 andw /∈ B4.
If |y| = 3k + 1, thenxy2z = w has#0(w) = p + 3k + 1 and#1(w) = p + 1, so |#0(w) − #1(w)|
(mod 3) = |p + 3k + 1 − (p + 1)| (mod 3) = 0 andw /∈ B4.
If |y| = 3k + 2, thenxy3z = w has#0(w) = p + 6k + 4 and#1(w) = p + 1, so |#0(w) − #1(w)|
(mod 3) = |p + 6k + 4 − (p + 1)| (mod 3) = 0 andw /∈ B4.
Therefore,B4 is not regular by the pumping lemma.


