Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can attempt fewer or more points than that. Your recorded grade will be the total score on the problems that you attempt.

1. (20 points, Sipser problems 5.17 and 5.18)
(a) (10 points) Prove that the Post Correspondence Problem is decidable if the alphabet is unary, i.e., $\Sigma=\{1\}$.
(b) ($\mathbf{1 0}$ points) Prove that the Post Correspondence Problem is undecidable if the alphabet is binary, i.e., $\Sigma=\{0,1\}$.
2. (30 points, Sipser problem 5.21) Let $A M B I G_{C F G}=\{G \mid G$ describes an ambiguous CFG $\}$. Show that $A M B I G_{C F G}$ is undecidable. (Hint: Use a reduction from $P C P$. Given a PCP instance

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \ldots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

construct a $\mathrm{CFG} G$ with the rules

$$
\begin{aligned}
& S \rightarrow T \mid B \\
& T \rightarrow t_{1} T \mathrm{a}_{1}|\ldots| t_{k} T \mathrm{a}_{k}\left|t_{1} \mathrm{a}_{1}\right| \ldots \mid t_{k} \mathrm{a}_{k} \\
& B \rightarrow b_{1} B \mathrm{a}_{1}|\ldots| b_{k} B \mathrm{a}_{k}\left|b_{1} \mathrm{a}_{1}\right| \ldots \mid b_{k} \mathrm{a}_{k}
\end{aligned}
$$

where $a_{1} \ldots a_{k}$ are new terminal symbols. Prove that this reduction works.)
3. (35 points, Sipser problem 5.26) Define a two-headed finite automaton (2HDFA) to be a deterministic finite automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can be independently controlled to move in either direction. The tape of a 2 HDFA is finite and is just large enough to contain the input plus a left-endmarker, \vdash, and a right-endmarker, \dashv. A 2HDFA may not move either of its heads beyond either delimeter. A 2HDFA accepts by entering a special accept state.
(a) (10 points) Describe a 2HDFA that recognizes the language $\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$. You don't need to specify all the details of the transition function. Just write a few sentences explaining how it works.
(b) ($\mathbf{1 0}$ points) Let $A_{2 H D F A}=\{M \# w \mid M$ describes a 2HDFA that accepts $w\}$. Show that $A_{2 H D F A}$ is Turing-decidable.
(c) (15 points) Let $E_{2 H D F A}=\{M \mid M$ describes a $2 H D F A$ such that $L(M)=\emptyset\}$. Show that $E_{2 H D F A}$ is not Turing-decidable. (Hint: use computational histories.)
4. (35 points, See Sipser problem 5.31) Let

$$
f(x)= \begin{cases}3 x+1, & \text { if } x \text { is odd } \\ x / 2, & \text { if } x \text { is even }\end{cases}
$$

for any integer $x \geq 0$. Starting from x, obtain the sequence $x, f(x), f(f(x)), \ldots$ Stop if you ever reach 1 . This sequence is known as the "hailstone" sequence for x. For example if $x=23$, then you get the sequence: 23,70 , $35,106,53,160,80,40,20,10,5,16,8,4,2,1$. Extensive comptuer tests have showen tha every starting point from 1 through 2.88×10^{18} produces a seqence that ends in 1 (see http://en.wikipedia.org/wiki/Collatz_conjecture). The Collatz conjecture is that all positive starting points end up at 1 , and this conjecture is unsolved.
Show that the Collatz conjecture is Turing-reducible to $T O T A L_{T M}$.
Note: Sipser seems to be asking to show a reduction to $A_{T M}$ but I couldn't think of any way to do that.
5. (35 points, Sipser problem 5.34) Let P be a PDA and $W W=\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Use computational histories to show that the question of whether P accepts some string in $W W$ is undecidable.
6. (45 points) The RSA encryption method relies on the assumption that it is difficult to factor large numbers. However, no one knows whether or not there is a polynomial time algorithm for factoring. However, there does exist a polynomial time algorithm that will determine whether or not the integer represented by N (a binary string) is prime or composite, but if N is composite, this algorithm doesn't determine the factors.

Now, consider a TM, M, that does the following when run with input N, a binary encoding of an integer:

1. Check if N is prime (e.g., using the algorithm described above). If N is prime, M writes the string " 0 " on its tape and halts. Otherwise, it continues to step 2.
2. Find f a factor of N with $1<f<N . M$ then writes the binary encoding of f on its tape and halts.

Describe how you can implement the second step of this algorithm with a method that will find f in polynomial time iff there is a polynomial time algorithm for factoring. In other words, your algorithm should be one that runs in polynomial time if factoring is polynomial, and in super-polynomial time otherwise.
Hints: (1) Use diagonalization. (2) Remember that big- O analysis ignores constant factors, even *really big* ones.

