
CpSc 421 Homework 10 Due: Nov. 24, 4pm

Attempt anythree of thesix problems below. The homework is graded on a scale of 100 points, even though you can
attempt fewer or more points than that. Your recorded grade will be the total score on the problems that you attempt.

1. (20 points, Sipser problems 5.17 and 5.18)

(a) (10 points) Prove that the Post Correspondence Problem is decidable if the alphabet is unary, i.e.,Σ = {1}.
(b) (10 points) Prove that the Post Correspondence Problem is undecidable if the alphabet is binary, i.e.,

Σ = {0, 1}.

2. (30 points, Sipser problem 5.21) LetAMBIGCFG = {G | G describes an ambiguous CFG}. Show that
AMBIGCFG is undecidable. (Hint: Use a reduction fromPCP . Given a PCP instance

P =
{ [

t1
b1

]
,

[
t2
b2

]
, . . . ,

[
tk

bk

] }
,

construct a CFGG with the rules

S → T | B
T → t1Ta1 | . . . | tkTak | t1a1 | . . . | tkak

B → b1Ba1 | . . . | bkBak | b1a1 | . . . | bkak,

wherea1 . . . ak are new terminal symbols. Prove that this reduction works.)

3. (35 points, Sipser problem 5.26) Define atwo-headed finite automaton(2HDFA) to be a deterministic finite
automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can
be independently controlled to move in either direction. The tape of a 2HDFA is finite and is just large enough
to contain the input plus a left-endmarker,`, and a right-endmarker,a. A 2HDFA may not move either of its
heads beyond either delimeter. A 2HDFA accepts by entering a special accept state.

(a) (10 points)Describe a 2HDFA that recognizes the language{anbncn | n ≥ 0}. You don’t need to specify
all the details of the transition function. Just write a few sentences explaining how it works.

(b) (10 points) Let A2HDFA = {M#w | M describes a 2HDFA that acceptsw}. Show thatA2HDFA is
Turing-decidable.

(c) (15 points)Let E2HDFA = {M | M describes a 2HDFA such thatL(M) = ∅}. Show thatE2HDFA is not
Turing-decidable. (Hint: use computational histories.)

4. (35 points, See Sipser problem 5.31) Let

f(x) =
{

3x + 1, if x is odd
x/2, if x is even

for any integerx ≥ 0. Starting fromx, obtain the sequencex, f(x), f(f(x)), . . . . Stop if you ever reach1. This
sequence is known as the “hailstone” sequence forx. For example ifx = 23, then you get the sequence:23, 70,
35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive comptuer tests have showen tha every starting point
from 1 through2.88×1018 produces a seqence that ends in 1 (seehttp://en.wikipedia.org/wiki/Collatz conjecture).
The Collatz conjecture is that all positive starting points end up at 1, and this conjecture is unsolved.

Show that the Collatz conjecture is Turing-reducible toTOTALTM .

Note: Sipser seems to be asking to show a reduction toATM but I couldn’t think of any way to do that.
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5. (35 points, Sipser problem 5.34) LetP be a PDA andWW = {ww | w ∈ {0, 1}∗}. Use computational
histories to show that the question of whetherP accepts some string inWW is undecidable.

6. (45 points) The RSA encryption method relies on the assumption that it is difficult to factor large numbers.
However, no one knows whether or not there is a polynomial time algorithm for factoring. However, there does
exist a polynomial time algorithm that will determine whether or not the integer represented byN (a binary
string) is prime or composite, but ifN is composite, this algorithm doesn’t determine the factors.

Now, consider a TM,M , that does the following when run with inputN , a binary encoding of an integer:

1. Check ifN is prime (e.g., using the algorithm described above). IfN is prime,M writes the string “0” on
its tape and halts. Otherwise, it continues to step 2.

2. Findf a factor ofN with 1 < f < N . M then writes the binary encoding off on its tape and halts.

Describe how you can implement the second step of this algorithm with a method that will findf in polynomial
time iff there is a polynomial time algorithm for factoring. In other words, your algorithm should be one that
runs in polynomial time if factoring is polynomial, and in super-polynomial time otherwise.

Hints: (1) Use diagonalization. (2) Remember that big-O analysis ignores constant factors, even*really big*
ones.
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