CpSc 421 Homework 10 Solutions

Attempt anythree of the six problems below. The homework is graded on a scale of 100 points, even though you can
attempt fewer or more points than that. Your recorded grade will be the total score on the problems that you attempt.

1. (20 points Sipser problems 5.17 and 5.18)

(a) (10 points) Prove that the Post Correspondence Problem is decidable if the alphabet is unary-i£l,}.
Solution (sketch): if the PCP instance has a tile of the fﬁ:n} , then that tile solves the problem. Other-

wise, if there is at least one tile of the forH;] with ¢ > j and one withi < j, then it is straightforward

to solve the problem. Finally, if all tiles have maté& on the top than on the bottom (or all have more on
the bottom than on the top), then the problem is not solvable.

(b) (10 points) Prove that the Post Correspondence Problem is undecidable if the alphabet is binary, i.e.,
¥ ={0,1}.
Solution (sketch): Consider any instanceRf'P with some alphabet;;. Letk = [log, |¥1]]. We can
encode each symbol @f; with & symbols of{0, 1}. With this encoding, every tile will a top string whose
length is a multple ok and likewise for the bottom string. This ensures that the string®ot } that
encode symbols of; will stay properly aligned, and the new, binary, problem is solvable iff the original
problem is solvable.

2. (30 points, Sipser problem 5.21) LedMBIG cr¢ = {G | G describes an ambiguous CFG Show that
AMBIG ¢r¢ is undecidable. (Hint: Use a reduction frafC'P. Given a PCP instance

b (]] (8])

construct a CFG- with the rules

S — T|B
T — tiTay|...|tTag|tiar]| ... | txag
B — bBa; | | b Bay, | bia; | | bkak,

wherea; . ..a; are new terminal symbols. Prove that this reduction works.)

Solution (sketch): If the PCP problem has a solutignjs, .. .i,, such that; ¢;, ...¢;,, = b; b, ... b
S =T ;> tiltig .. .tikaik .. .aizaz'l andS = B *:> bilbiz e bikaik e aiQail. Becausefilti2 ...t
bi, bi, ... b, these two derivations produce the same string. Téus,ambiguous.

Now, I'll show that if G is ambiguous, then the PCP problem has a solution. The critical observation is that a
grammar with starts symbdl and has the rules given above is unambiguous, as there is only one way to get
any suffix ofa; symbols. Likewise, a grammar that starts withis unambiguous. So, @ is ambiguous, there

must be a stringy € L(G) such thatS = T = 2 andS = B = z. The derivation gives a solution to the PCP
problem (in fact, the solution is the reverse of the string &8 at the end oft).

, then

Tm
tm T

Gm 1

3. (35 points Sipser problem 5.26) Definetevo-headed finite automatq@HDFA) to be a deterministic finite
automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can
be independently controlled to move in either direction. The tape of a 2HDFA is finite and is just large enough
to contain the input plus a left-endmarker,and a right-endmarketj. A 2HDFA may not move either of its
heads beyond either delimeter. A 2HDFA accepts by entering a special accept state.

(a) (10 points)Describe a 2HDFA that recognizes the langufa@b™c™ | n > 0}. You don't need to specify
all the details of the transition function. Just write a few sentences explaining how it works.
Solution (sketch): Build 2 HDFA that starts by moving its first head one square to the right to reach a
If it reaches & or c it can immediately reject and if it reachesiat can immediately accept. Now, move
the second head to the right until it reachds. df it reaches a or a first, the machine rejects. Scan

both heads to the right thereby pairingaipandb symbols. When the left head reachds, @he right head
should be at its first ; otherwise, reject. Now, compare the numbebisfandc’s in the same way. If they
are equal, accept; otherwise, reject.

(b) (10 points) Let Agypra = {M#w | M describes a 2HDFA that accept§. Show thatAzppra is
Turing-decidable.
Solution (sketch): Because the tape is bounde@ll/®FA has a finite number of configuration§uw| +
2)2|Q| because each tape head has+ 2 possible positions, and the machine h@$ possible states
(assuming? is the set of states for the machine). Thus, it is sufficient to simulate2ttiéxF’A for that
many steps. If it accepts by then, then accept. OtherwiseAlieFA must be in a loop and we can reject.

(c) (15 points)Let Esppra = {M | M describes a 2HDFA such tha{M) = (}. Show thatEsypra is Not
Turing-decidable. (Hint: use computational histories.)

Solution (sketch): We can basically use the same method as for part (a2HIMEA moves its first head

one square to the right (of thg to the first symbol of the first configuration. It moves its second head to

the right to the first symbol of the second configuration. Now, it scans the two heads to the right making
sure that the configuration under the right head is a valid successor of the configuration under the left head.
The 2HDFA also notes if the configuration under the right head is an accepting configuration. If it reaches
the right-endmarker having seen a valid sequence of configurations with the final one being in an accepting
sate forM, then the2HDFA accepts. Otherwise, thefIDFA rejects.

4. (35 points, See Sipser problem 5.31) Let

flz) = 3r+1, if xisodd
o= x/2, if 2 is even

for any integer: > 0. Starting fromz, obtain the sequenee f(z), f(f(z)), Stop if you ever reach This
sequence is known as the “hailstone” sequence fétor example ifc = 23, then you get the sequenas, 70,

35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive comptuer tests have showen tha every starting point
from 1 through2.88x 10'8 produces a segence that ends in 1 tgge//en.wikipedia.org/wiki/Collatz_conjecture).
The Collatz conjecture is that all positive starting points end up at 1, and this conjecture is unsolved.

Show that the Collatz conjecture is Turing-reducibletOTA L1y, .
Note: Sipser seems to be asking to show a reductioti;tg but | couldn’t think of any way to do that.

Solution (sketch): Build a TMM, whose input strings are encodings of integers. On imgut/ computes the
hailstone sequence and halts (e.g.i accepts) if it reaches 1. Othebviseps. M is total (halts on all inputs)
iff the Collatz conjecture is true.

5. (35 points Sipser problem 5.34) LeP be a PDA andWW = {ww | w € {0,1}*}. Use computational
histories to show that the question of whettitaccepts some string i’ is undecidable.
Solution (sketch): Given a striny/ #x whereM describes a TM and describes an input té/, we’ll build a
PDA that accepts a string of the forr iff = € L(M). As we described in the Nov. 10 notes, we'll write the
history asCoCXCoCR ... C,,, where(y is the initial configuration(”,, is the final configuration (reversed if
n is odd, even-indexed configurations are written in normal order, and odd-indexed configurations are reversed.
Our PDA will pushC onto its stack while confirming that it is the initial configuration farrunning with input
w. For each odd indexed configuration, the PDA pops the previous configuration off of its stack and verifies that
the new configuration is the successor of the previous one. When the PDA reads thé Bisps configuration
Cy and then pushes; onto the stack. This time, it reads the configurations confirming that each even-indexed
configuration is the successor of the previous odd-indexed configuration. The PDA accepts if all of these checks
for valid successors of configurations pass and if the final configuration is an accepting one. This PDA accepts
a string of the formuvw iff M acceptse.

Note that this PDA may accept strings of the fox wherey # = even if M does not accept. This is
because our construction relies on the separte check that the input is of thefofthat can’t be done by a
PDA) to ensure that the two passes over the history are checkirsguthehistory.

6. (45 points) The RSA encryption method relies on the assumption that it is difficult to factor large numbers.
However, no one knows whether or not there is a polynomial time algorithm for factoring. However, there does
exist a polynomial time algorithm that will determine whether or not the integer represent®d(ayinary
string) is prime or composite, but ¥ is composite, this algorithm doesn’t determine the factors.

Now, consider a TMM, that does the following when run with inpi, a binary encoding of an integer:

1. Check ifN is prime (e.g., using the algorithm described above)V lis prime, M writes the string 0” on
its tape and halts. Otherwise, it continues to step 2.

2. Find f a factor of N with 1 < f < N. M then writes the binary encoding ¢fon its tape and halts.

Describe how you can implement the second step of this algorithm with a method that wjilifiqblynomial
time iff there is a polynomial time algorithm for factoring. In other words, your algorithm should be one that
runs in polynomial time if factoring is polynomial, and in super-polynomial time otherwise.

Hints: (1) Use diagonalization. (2) Remember that ignalysis ignores constant factors, evesally big*
ones.

Solution (sketch): If factoring is polynomial time, then there exists some MMhat when run with the encodng
of an integem on its tape, computes some non-trivial factomofind halts with that factor written on its tape.
Furthermore, there is such a TM that performs its computation in polynomial time.

Let M; be thei'” TM is some enumeration sequence. Now, run the following program:

fori =1tooodo
forj=1toido
run M; with inputn for 4 steps.
if M; halts with ini steps
check to see if the string on its tape is a non-trivial factor of
if so, accept.
od
od

This computation is guaranteed to terminate becausecomposite From step 1 of the machine described in
the problem, and there is some TM that will compute the factons. dlow, consider the case if factoring is

polynomial time. Then there is some TM; that finds a factor of in polynomial time. Note that the existence

of M; does not depend on whether or not we know that factory is polynomial time. It only depends on whether
or not factoring actually is polynomial time. Léfn) denote the length of the string that encodesnd note
that/(n) ~ logn. If M; takes timef(¢(n)) time to find a factor, wher¢ is a polynomial (the length of the
string that describes is ©(log), then the total time to perform step 2 is rougbly(j + f(¢(n))?)). However,

j is a constant. So this 9(f3(¢(n))) which is a polynomial ir/(n). Thus, this is a factoring algorithm that is
guaranteed to run in polynomial time iff factoring is in polynomial time.

