
CpSc 421 Homework 10 Solutions

Attempt anythree of thesix problems below. The homework is graded on a scale of 100 points, even though you can
attempt fewer or more points than that. Your recorded grade will be the total score on the problems that you attempt.

1. (20 points, Sipser problems 5.17 and 5.18)

(a) (10 points) Prove that the Post Correspondence Problem is decidable if the alphabet is unary, i.e.,Σ = {1}.
Solution (sketch): if the PCP instance has a tile of the form

[
1i

1i

]
, then that tile solves the problem. Other-

wise, if there is at least one tile of the form
[

1i

1j

]
with i > j and one withi < j, then it is straightforward

to solve the problem. Finally, if all tiles have more1’s on the top than on the bottom (or all have more on
the bottom than on the top), then the problem is not solvable.

(b) (10 points) Prove that the Post Correspondence Problem is undecidable if the alphabet is binary, i.e.,
Σ = {0, 1}.
Solution (sketch): Consider any instance ofPCP with some alphabet,Σ1. Let k = dlog2 |Σ1|e. We can
encode each symbol ofΣ1 with k symbols of{0, 1}. With this encoding, every tile will a top string whose
length is a multple ofk and likewise for the bottom string. This ensures that the strings of{0, 1} that
encode symbols ofΣ1 will stay properly aligned, and the new, binary, problem is solvable iff the original
problem is solvable.

2. (30 points, Sipser problem 5.21) LetAMBIGCFG = {G | G describes an ambiguous CFG}. Show that
AMBIGCFG is undecidable. (Hint: Use a reduction fromPCP . Given a PCP instance

P =
{ [

t1
b1

]
,

[
t2
b2

]
, . . . ,

[
tk

bk

] }
,

construct a CFGG with the rules

S → T | B
T → t1Ta1 | . . . | tkTak | t1a1 | . . . | tkak

B → b1Ba1 | . . . | bkBak | b1a1 | . . . | bkak,

wherea1 . . . ak are new terminal symbols. Prove that this reduction works.)
Solution (sketch): If the PCP problem has a solution,i1, i2, . . .im such thatti1ti2 . . . tim = bi1bi2 . . . bim , then
S ⇒ T

∗⇒ ti1ti2 . . . tik
aik

. . . ai2ai1 andS ⇒ B
∗⇒ bi1bi2 . . . bik

aik
. . . ai2ai1. Becauseti1ti2 . . . tim

=
bi1bi2 . . . bim

, these two derivations produce the same string. Thus,G is ambiguous.

Now, I’ll show that if G is ambiguous, then the PCP problem has a solution. The critical observation is that a
grammar with starts symbolT and has the rules given above is unambiguous, as there is only one way to get
any suffix ofai symbols. Likewise, a grammar that starts withB is unambiguous. So, ifG is ambiguous, there
must be a string,x ∈ L(G) such thatS ⇒ T

∗⇒ x andS ⇒ B
∗⇒ x. The derivation gives a solution to the PCP

problem (in fact, the solution is the reverse of the string ofai’s at the end ofx).

3. (35 points, Sipser problem 5.26) Define atwo-headed finite automaton(2HDFA) to be a deterministic finite
automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can
be independently controlled to move in either direction. The tape of a 2HDFA is finite and is just large enough
to contain the input plus a left-endmarker,`, and a right-endmarker,a. A 2HDFA may not move either of its
heads beyond either delimeter. A 2HDFA accepts by entering a special accept state.

(a) (10 points)Describe a 2HDFA that recognizes the language{anbncn | n ≥ 0}. You don’t need to specify
all the details of the transition function. Just write a few sentences explaining how it works.
Solution (sketch): Build a2HDFA that starts by moving its first head one square to the right to reach aa.
If it reaches ab or c it can immediately reject and if it reaches aa it can immediately accept. Now, move
the second head to the right until it reaches ab. If it reaches ac or aa first, the machine rejects. Scan
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both heads to the right thereby pairing upa andb symbols. When the left head reaches ab, the right head
should be at its firstc ; otherwise, reject. Now, compare the number ofb’s andc ’s in the same way. If they
are equal, accept; otherwise, reject.

(b) (10 points) Let A2HDFA = {M#w | M describes a 2HDFA that acceptsw}. Show thatA2HDFA is
Turing-decidable.
Solution (sketch): Because the tape is bounded, a2HDFA has a finite number of configurations:(|w| +
2)2|Q| because each tape head has|w| + 2 possible positions, and the machine has|Q| possible states
(assumingQ is the set of states for the machine). Thus, it is sufficient to simulate that2HDFA for that
many steps. If it accepts by then, then accept. Otherwise, the2HDFA must be in a loop and we can reject.

(c) (15 points)Let E2HDFA = {M | M describes a 2HDFA such thatL(M) = ∅}. Show thatE2HDFA is not
Turing-decidable. (Hint: use computational histories.)

Solution (sketch): We can basically use the same method as for part (a). The2HDFA moves its first head
one square to the right (of thè) to the first symbol of the first configuration. It moves its second head to
the right to the first symbol of the second configuration. Now, it scans the two heads to the right making
sure that the configuration under the right head is a valid successor of the configuration under the left head.
The2HDFA also notes if the configuration under the right head is an accepting configuration. If it reaches
the right-endmarker having seen a valid sequence of configurations with the final one being in an accepting
sate forM , then the2HDFA accepts. Otherwise, the2HDFA rejects.

4. (35 points, See Sipser problem 5.31) Let

f(x) =
{

3x + 1, if x is odd
x/2, if x is even

for any integerx ≥ 0. Starting fromx, obtain the sequencex, f(x), f(f(x)), . . . . Stop if you ever reach1. This
sequence is known as the “hailstone” sequence forx. For example ifx = 23, then you get the sequence:23, 70,
35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. Extensive comptuer tests have showen tha every starting point
from 1 through2.88×1018 produces a seqence that ends in 1 (seehttp://en.wikipedia.org/wiki/Collatz conjecture).
The Collatz conjecture is that all positive starting points end up at 1, and this conjecture is unsolved.

Show that the Collatz conjecture is Turing-reducible toTOTALTM .

Note: Sipser seems to be asking to show a reduction toATM but I couldn’t think of any way to do that.

Solution (sketch): Build a TM,M , whose input strings are encodings of integers. On inputw, M computes the
hailstone sequence and halts (e.g.i accepts) if it reaches 1. Otherwise,M loops.M is total (halts on all inputs)
iff the Collatz conjecture is true.
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5. (35 points, Sipser problem 5.34) LetP be a PDA andWW = {ww | w ∈ {0, 1}∗}. Use computational
histories to show that the question of whetherP accepts some string inWW is undecidable.
Solution (sketch): Given a stringM#x whereM describes a TM andx describes an input toM , we’ll build a
PDA that accepts a string of the formh$h$ iff x ∈ L(M). As we described in the Nov. 10 notes, we’ll write the
history asC0C

R
1 C2C

R
3 . . . Cn, whereC0 is the initial configuration,Cn is the final configuration (reversed if

n is odd, even-indexed configurations are written in normal order, and odd-indexed configurations are reversed.
Our PDA will pushC0 onto its stack while confirming that it is the initial configuration forM running with input
w. For each odd indexed configuration, the PDA pops the previous configuration off of its stack and verifies that
the new configuration is the successor of the previous one. When the PDA reads the first$, it skips configuration
C0 and then pushesC1 onto the stack. This time, it reads the configurations confirming that each even-indexed
configuration is the successor of the previous odd-indexed configuration. The PDA accepts if all of these checks
for valid successors of configurations pass and if the final configuration is an accepting one. This PDA accepts
a string of the formww iff M acceptsx.

Note that this PDA may accept strings of the formy$z$ wherey 6= z even if M does not acceptx. This is
because our construction relies on the separte check that the input is of the formww (that can’t be done by a
PDA) to ensure that the two passes over the history are checking thesamehistory.

6. (45 points) The RSA encryption method relies on the assumption that it is difficult to factor large numbers.
However, no one knows whether or not there is a polynomial time algorithm for factoring. However, there does
exist a polynomial time algorithm that will determine whether or not the integer represented byN (a binary
string) is prime or composite, but ifN is composite, this algorithm doesn’t determine the factors.

Now, consider a TM,M , that does the following when run with inputN , a binary encoding of an integer:

1. Check ifN is prime (e.g., using the algorithm described above). IfN is prime,M writes the string “0” on
its tape and halts. Otherwise, it continues to step 2.

2. Findf a factor ofN with 1 < f < N . M then writes the binary encoding off on its tape and halts.

Describe how you can implement the second step of this algorithm with a method that will findf in polynomial
time iff there is a polynomial time algorithm for factoring. In other words, your algorithm should be one that
runs in polynomial time if factoring is polynomial, and in super-polynomial time otherwise.

Hints: (1) Use diagonalization. (2) Remember that big-O analysis ignores constant factors, even*really big*
ones.

Solution (sketch): If factoring is polynomial time, then there exists some TM,M that when run with the encodng
of an integern on its tape, computes some non-trivial factor ofn and halts with that factor written on its tape.
Furthermore, there is such a TM that performs its computation in polynomial time.

Let Mi be theith TM is some enumeration sequence. Now, run the following program:

for i = 1 to∞ do
for j = 1 to i do

runMj with inputn for i steps.
if Mj halts with ini steps

check to see if the string on its tape is a non-trivial factor ofn.
if so, accept.

od
od

This computation is guaranteed to terminate becausen is composite From step 1 of the machine described in
the problem, and there is some TM that will compute the factors ofn. Now, consider the case if factoring is
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polynomial time. Then there is some TMMj that finds a factor ofn in polynomial time. Note that the existence
of Mj does not depend on whether or not we know that factory is polynomial time. It only depends on whether
or not factoring actually is polynomial time. Let`(n) denote the length of the string that encodesn, and note
that `(n) ≈ log n. If Mj takes timef(`(n)) time to find a factor, wheref is a polynomial (the length of the
string that describesn is Θ(log n), then the total time to perform step 2 is roughlyO((j +f(`(n))3)). However,
j is a constant. So this isO(f3(`(n))) which is a polynomial iǹ (n). Thus, this is a factoring algorithm that is
guaranteed to run in polynomial time iff factoring is in polynomial time.
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