Homework 1

Solutions

- 1. (15 points) Let $\Sigma = \{a, b, c\}$. Figure 7 depicts two finite state machines that read Let L_a and L_b denote the languages recognized by DFA (a) and DFA (b) respectively.
 - (a) (6 points) For each of L_a and L_b list three strings in Σ^* that are in the language and three strings in Σ^* that are not in the language.

Solution: $\{abc, aabbcc, aaaabccc\} \subset L_a$ $\{\epsilon, acabc, c\} \cap L_a = \emptyset$ $\{\epsilon, aab, aaacaab\} \subset L_b$ $\{aaab, aaacc, a^7\} \cap L_b = \emptyset$

- (b) (3 points) Write a short, English description of language, L_a. Solution: Language L_a is the set of all strings starting with one or more a followed by one or more b followed by one or more c.
- (c) (6 points) Write a short, English description of language, L_b. Solution: Language L_b is the set of all strings s such that (1) the #a(s) - 2#b(s) - 3#c(s) = 0; (2) For all prefixes x of s, 0 ≤ #a(x) - 2#b(x) - 3#c(x) ≤ 6.
- 2. (15 points) (inspired by Sipser exercise 1.6 (p. 84): Give state diagrams of DFAs recognizing the following languages. For each language, the alphabet is {0,1}.
 - (a) $\{w \mid w \text{ begins and ends with the same symbol}\}.$
 - (b) $\{w \mid w \text{ contains three consecutive } 1s\}.$
 - (c) $\{w \mid w \text{ contains neither the substring 010 nor the substring 101}\}$.

Solution: See below.

- (20 points) (inspired by Sipser exercise 1.7 (p. 84): Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. For each language, the alphabet is Σ with Σ = {0,1}. Solution: See below.
 - (a) The set of strings w that end with the substring 010:

$$\{w \mid \exists x \in \Sigma^*. w = x010\}$$

Use four states.

(b) The set of strings w that contain the substring 010:

$$\{w \mid \exists x, y \in \Sigma^*. \ w = x \texttt{Olog}\}$$

Use four states.

(c) The set of strings w that can be written as $x_1 \cdot x_2 \cdots x_k$ for some $k \ge 0$, with each x_i is an element of

 $\{01, 10, 001, 0011\}$

Use eleven states.

(d) The set of strings whose length is a multiple of three plus a multiple of five:

$$\{w \mid \exists m, n \in \mathbb{N}. \mid w \mid = 3m + 5n\}$$

Use eight states.

CpSc 421

Figure 1: Solution for question 2a

Figure 2: Solution for question 2b

Figure 3: Solution for question 2c

Figure 4: Solution for question 3a

Figure 5: Solution for question 3b

Figure 6: Solution for question 3c

Figure 7: Solution for question 3d

4. (20 points): Let $\Sigma = \{0, 1\}$. Let L_k be the set of all strings whose k^{th} from end symbol is a 1:

 $L_k = \{ w \in \Sigma^* \mid \exists x \in \Sigma^*, y \in \Sigma^{k-1}. w = x \mathbf{1}y \}$

In the September 12 notes, we claimed that any DFA that recognizes L_k must have at least 2^k states. Prove this claim.

Solution:

Suppose the claim does not hold, i.e. there exists a DFA $A_k = (Q_k, \Sigma, \delta, q_0, F)$ recognizing L_k with $|Q_k| < 2^k$. Since there are 2^k strings of length k over $\Sigma = \{0, 1\}$, there exists two strings $s_1, s_2 \in \Sigma^k$ such that $s_1 \neq s_2$ and A_k is in the same state after processing both s_1 and s_2 . Without loss of generarily, assume that s_1 and s_2 differ in symbol i, i.e. $s_1^i = 0$ and $s_2^i = 1$ with $0 \le i \le k - 1$. Then A_k is in the same state after processing strings $s_1 \circ 0^i$ and $s_2 \circ 0^i$, but $s_1 \circ 0^i \notin L_k$ and $s_2 \circ 0^i \in L_k$, a contradiction. Therefore, $|Q_k| \ge 2^k$. \Box

5. (20 points, extra credit): In this exercise, you will prove the equivalence of NFA acceptances as defined in Sipser and the formulation that I gave in class. This problem statement is long because I first summarize both Sipser's and my definitions of acceptance. If you are comfortable with both, you can skip to the end of the problem statement where I ask you to prove the equivalence of the two formulations.

Let $N_{mrg} = (Q, \Sigma, \Delta, q_0, F)$ be an NFA as defined in the September 12 notes.

Q is a finite set of states;

 Σ is a finite alphabet;

 $\Delta \subseteq Q \times \Sigma_{\epsilon} \times Q$ is the transition relation;

- $q_0 \in Q$ is the initial state; and
- $F \subseteq Q$ is the set of accepting states.

where $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}.$

Here are the formulas that we used to define NFA acceptance (see the slides for explanations). $close_{\epsilon}(q)$ is the subset of Q where $p \in close_{\epsilon}(q)$ iff

$$p = q \exists q' \in close_{\epsilon}(q). \ (q', \epsilon, p) \in \Delta$$

We extended $close_{\epsilon}$ to sets as

$$close_{\epsilon}(G) = \bigcup_{q \in G} close_{\epsilon}(q)$$

Then we defined:

$$\begin{array}{lll} step(q,c) &=& close_{\epsilon}(\{q' \mid (q,c,q') \in \Delta\}), & c \in \Sigma \\ step(G,c) &=& \bigcup_{q \in G} step(q,c), & G \subseteq Q, c \in \Sigma \\ \Delta(G,\epsilon) &=& close_{\epsilon}(G), & G \subseteq Q \\ \Delta(G,x \cdot c) &=& step(\Delta(G,x),c), & G \subseteq Q, x \in \Sigma^{*}, c \in \Sigma \end{array}$$

Finally, we said that N_{mrg} accepts s iff

$$\Delta(\{q_0\}, s) \cap F \neq \emptyset$$

Now, for Sipser's version. Given $N_{mrg} = (Q, \Sigma, \Delta, q_0, F)$ as described above, let $N_{ms} = (Q, \Sigma, \delta, q_0, F)$ with $\delta : Q \times \Sigma_{\epsilon} \to 2^Q$ where 2^Q is the power set of Q and

$$\delta(q,c) = \{q' \mid (q,c,q') \in \Delta\}$$

Sipser says that NFA N_{ms} accepts string s iff we can find $y_1, y_2, \ldots, y_m \in \Sigma_{\epsilon}$ and $r_0, r_2, \ldots, r_m \in Q$ such that

•
$$s = y_1 \cdot y_2 \cdots y_m$$

- $r_0 = q_0;$
- for i in $0 \dots m 1$, $r_{i+1} \in \delta(r_i, y_i + 1)$;
- $r_m \in F$.

Prove that N_{ms} accepts a string (i.e. acceptance by Sipser's condition), iff N_{mrg} accepts the string (i.e. acceptance by the condition given in class).