1. (15 points) Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Figure 7 depicts two finite state machines that read Let L_{a} and L_{b} denote the languages recognized by DFA (a) and DFA (b) respectively.
(a) (6 points) For each of L_{a} and L_{b} list three strings in Σ^{*} that are in the language and three strings in Σ^{*} that are not in the language.

Solution:

$\{a b c, a a b b c c, a a a a b c c c\} \subset L_{a}$
$\{\epsilon, a c a b c, c\} \cap L_{a}=\emptyset$
$\{\epsilon, a a b, a a a c a a b\} \subset L_{b}$
$\left\{a a a b, a a a c c, a^{7}\right\} \cap L_{b}=\emptyset$
(b) (3 points) Write a short, English description of language, L_{a}. Solution:

Language L_{a} is the set of all strings starting with one or more a followed by one or more b followed by one or more c.
(c) (6 points) Write a short, English description of language, L_{b}. Solution:

Language L_{b} is the set of all strings s such that (1) the $\# a(s)-2 \# b(s)-3 \# c(s)=0$; (2) For all prefixes x of $\mathrm{s}, 0 \leq \# a(x)-2 \# b(x)-3 \# c(x) \leq 6$.
2. (15 points) (inspired by Sipser exercise 1.6 (p. 84): Give state diagrams of DFAs recognizing the following languages. For each language, the alphabet is $\{0,1\}$.
(a) $\{w \mid w$ begins and ends with the same symbol $\}$.
(b) $\{w \mid w$ contains three consecutive 1 s$\}$.
(c) $\{w \mid w$ contains neither the substring 010 nor the substring 101$\}$.

Solution: See below.
3. (20 points) (inspired by Sipser exercise 1.7 (p. 84): Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. For each language, the alphabet is Σ with $\Sigma=\{0,1\}$. Solution: See below.
(a) The set of strings w that end with the substring 010:

$$
\left\{w \mid \exists x \in \Sigma^{*} . w=x 010\right\}
$$

Use four states.
(b) The set of strings w that contain the substring 010:

$$
\left\{w \mid \exists x, y \in \Sigma^{*} . w=x 010 y\right\}
$$

Use four states.
(c) The set of strings w that can be written as $x_{1} \cdot x_{2} \cdots x_{k}$ for some $k \geq 0$, with each x_{i} is an element of

$$
\{01,10,001,0011\}
$$

Use eleven states.
(d) The set of strings whose length is a multiple of three plus a multiple of five:

$$
\{w|\exists m, n \in \mathbb{N} .|w|=3 m+5 n\}
$$

Use eight states.

Figure 1: Solution for question 2 a

Figure 2: Solution for question 2 b

Figure 3: Solution for question 2c

Figure 4: Solution for question 3a

Figure 5: Solution for question 3b

Figure 6: Solution for question 3 c

Figure 7: Solution for question 3d
4. (20 points): Let $\Sigma=\{0,1\}$. Let L_{k} be the set of all strings whose $k^{t h}$ from end symbol is a 1:

$$
L_{k}=\left\{w \in \Sigma^{*} \mid \exists x \in \Sigma^{*}, y \in \Sigma^{k-1} . w=x 1 y\right\}
$$

In the September 12 notes, we claimed that any DFA that recognizes L_{k} must have at least 2^{k} states. Prove this claim.

Solution:

Suppose the claim does not hold, i.e. there exists a DFA $A_{k}=\left(Q_{k}, \Sigma, \delta, q_{0}, F\right)$ recognizing L_{k} with $\left|Q_{k}\right|<2^{k}$. Since there are 2^{k} strings of length k over $\Sigma=\{0,1\}$, there exists two strings $s_{1}, s_{2} \in \Sigma^{k}$ such that $s_{1} \neq s_{2}$ and A_{k} is in the same state after processing both s_{1} and s_{2}. Without loss of generarilty, assume that s_{1} and s_{2} differ in symbol i, i.e. $s_{1}^{i}=0$ and $s_{2}^{i}=1$ with $0 \leq i \leq k-1$. Then A_{k} is in the same state after processing strings $s_{1} \circ 0^{i}$ and $s_{2} \circ 0^{i}$, but $s_{1} \circ 0^{i} \notin L_{k}$ and $s_{2} \circ 0^{i} \in L_{k}$, a contradiction. Therefore, $\left|Q_{k}\right| \geq 2^{k}$.
5. (20 points, extra credit): In this exercise, you will prove the equivalence of NFA acceptances as defined in Sipser and the formulation that I gave in class. This problem statement is long because I first summarize both Sipser's and my definitions of acceptance. If you are comfortable with both, you can skip to the end of the problem statement where I ask you to prove the equivalence of the two formulations.
Let $N_{m r g}=\left(Q, \Sigma, \Delta, q_{0}, F\right)$ be an NFA as defined in the September 12 notes.
Q is a finite set of states;
Σ is a finite alphabet;
$\Delta \subseteq Q \times \Sigma_{\epsilon} \times Q$ is the transition relation;
$q_{0} \in Q$ is the initial state; and
$F \subseteq Q$ is the set of accepting states.
where $\Sigma_{\epsilon}=\Sigma \cup\{\epsilon\}$.
Here are the formulas that we used to define NFA acceptance (see the slides for explanations). $\operatorname{close}_{\epsilon}(q)$ is the subset of Q where $p \in \operatorname{close}_{\epsilon}(q)$ iff

$$
\begin{aligned}
& p=q \\
& \exists q^{\prime} \in \operatorname{close}_{\epsilon}(q) .\left(q^{\prime}, \epsilon, p\right) \in \Delta
\end{aligned}
$$

We extended close $_{\epsilon}$ to sets as

$$
\operatorname{close}_{\epsilon}(G)=\bigcup_{q \in G} \operatorname{close}_{\epsilon}(q)
$$

Then we defined:

$$
\begin{aligned}
\operatorname{step}(q, c) & =\operatorname{close}_{\epsilon}\left(\left\{q^{\prime} \mid\left(q, c, q^{\prime}\right) \in \Delta\right\}\right), & & c \in \Sigma \\
\operatorname{step}(G, c) & =\bigcup_{q \in G} \operatorname{step}(q, c), & & G \subseteq Q, c \in \Sigma \\
\Delta(G, \epsilon) & =\operatorname{close}(G), & & G \subseteq Q \\
\Delta(G, x \cdot c) & =\operatorname{step}(\Delta(G, x), c), & & G \subseteq Q, x \in \Sigma^{*}, c \in \Sigma
\end{aligned}
$$

Finally, we said that $N_{m r g}$ accepts s iff

$$
\Delta\left(\left\{q_{0}\right\}, s\right) \cap F \neq \emptyset
$$

Now, for Sipser's version. Given $N_{m r g}=\left(Q, \Sigma, \Delta, q_{0}, F\right)$ as described above, let $N_{m s}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $\delta: Q \times \Sigma_{\epsilon} \rightarrow 2^{Q}$ where 2^{Q} is the power set of Q and

$$
\delta(q, c)=\left\{q^{\prime} \mid\left(q, c, q^{\prime}\right) \in \Delta\right\}
$$

Sipser says that NFA $N_{m s}$ accepts string s iff we can find $y_{1}, y_{2}, \ldots, y_{m} \in \Sigma_{\epsilon}$ and $r_{0}, r_{2}, \ldots r_{m} \in Q$ such that

- $s=y_{1} \cdot y_{2} \cdots y_{m}$;
- $r_{0}=q_{0}$;
- for i in $0 \ldots m-1, r_{i+1} \in \delta\left(r_{i}, y_{i}+1\right)$;
- $r_{m} \in F$.

Prove that $N_{m s}$ accepts a string (i.e. acceptance by Sipser's condition), iff $N_{m r g}$ accepts the string (i.e. acceptance by the condition given in class).

