1. (20 points) The September 5 lecture defined a function called f (slide 22):

$$
\begin{aligned}
f(\epsilon) & =0 \\
f(s \cdot 0) & =f(s)-1 \\
f(s \cdot 1) & =f(s)+1
\end{aligned}
$$

and made four observations about f. Prove the two properties from that slide that are stated below:
(a) (10 points) $f(x y)=f(x)+f(y)$.

Hint: use induction on the construction (i.e. length) of y.
(b) If $f(s)>0$ then for all $k \in[0 \ldots f(s)], s$ can be divided into two strings, x, and y, such that $s=x y$ and $f(x)=k$.
Hint: my solution uses induction on k and the result from part (a).
2. (20 points) Define the set Q inductively as shown below:

$$
\begin{aligned}
(0,1) & \in Q \\
\text { if }(x, y) \in Q \text { then }(x+y, y+2) & \in Q
\end{aligned}
$$

(a) (5 points) Write down the first four tuples in Q (i.e. the four with the smallest values for x or y).
(b) (5 points) Describe the set Q using one English sentence. This should be something along the linese of: (x, y) is in Q iff some property of x and y holds.
Your job is to figure out what that property is and state it.
(c) ($\mathbf{1 0}$ points) Use induction to prove that Q is the set that you described in part (b). Remember to include both directions of the proof.
3. (25 points) Let Σ be an alphabet. For $s \in \Sigma^{*}$ define $s^{\mathcal{R}}$ to be the reverse of s as given below:

$$
\begin{array}{r}
\epsilon^{\mathcal{R}}=\epsilon \\
(w \cdot c)^{\mathcal{R}}=c \cdot w^{\mathcal{R}}
\end{array}
$$

a. (5 points) Show that (know $)^{\mathcal{R}}=$ wonk by repeatedly applying the definition of \mathcal{R}.

A string $s \in \Sigma^{*}$ is a palindrome iff $s=s^{\mathcal{R}}$. Let P be the set of all palindromes.
b. (5 points) Give an inductive definition of P.
c. (5 points) Give a short explanation in English of why your definition is correct.
(This is preparation for the proof requested in part (d).
d. ($\mathbf{1 0}$ points) Use induction to prove that the set P that you described in part (b) is indeed the set of all palindromes.

