
CpSc 421 Midterm 2 November 5, 2008

Do problem 0 and any three of problems 1-4.
If you attempt more than three of problems 1-4, please indicate which ones you want graded – otherwise, I’ll make an
arbitrary choice.

Graded on a scale of 100 points.
You can attempt from 105 to 110 points depending on which problems you choose. If you score over 100, you get to
keep the extra credit.

0. (5 points) Your name: Mark Greenstreet Your student #:9.1093188× 10−31

Question Score

0

TOTAL

0

1. (30 points) Let G = (V, Σ, R,Expr) be the CFG with

V = {Expr ,Variable ,Constant ,Letter ,Digit}
Σ = {0,1, . . . ,9,a,b, . . . ,z,+,*}

and rules

Expr → Variable | Constant | Expr + Expr | Expr * Expr

Variable → Letter | Variable Letter | Variable Digit

Constant → Digit | Constant Digit

Letter → a | b | . . . | z
Digit → 0 | 1 | . . . | 9

(a) (15 points) This grammar is ambiguous. Demonstrate this by drawing two different parse trees that gener-
ate the string

x+12*y

If you use the back side of one of these pages or one of the blankpages at the back, please write “See page
#” where# is the page number here.

Solution:

Expr+Expr

Variable

x

Letter Variable

x

Letter

Constant

1

Digit 2

Digit Constant

1

Digit 2

Digit

Expr

ExprExpr

Constant

Constant

*

Variable

y

Letter

Expr

ExprExpr *

+Expr Variable

y

Letter

Expr

Constant

Constant

(b) (15 points) Write an unambiguous grammar that generates the same language asG. You can just write the
rules. If a variable in your grammar has the same rules as a variable in the grammar above, you can write

V → same asG

Solution:
Expr → Term | Expr+Term

Term → Factor | Term*Factor

Factor → Variable | Constant

Variable → same asG
Constant → same asG

Letter → same asG
Digit → same asG

The “rules” forLetter andDigit do not need to be included to get full credit.

1

2. (35 points) One of the two languages below is context-free (20 points), and the other is not (15 points). Identify
which is which and justify your answers. For both languages,Σ = {a,b}.

B1 = {s | (abs(#a(s) − #b(s)) mod 3) = 1}
B2 = {s | ∃n. s = anb2nan}

where#a(s) indicates the number ofa’s in s, #b(s) indicates the number ofb’s, andabs(x) denotes the
absolute value ofx.

Solution:
B1 is context free.

Justification 1: We can construct a PDA that recognizesB1 as shown below:

ε,ε $

εb, b

ε,ε ε

q0

b,a ε

a,b ε
a,ε a

ε,a ε

ε,b ε

ε,a ε

ε,a ε

ε,b ε

ε,b ε
qf

ε,ε ε
a0

a2

1a

b1b2

b0

q1

In stateq1, this machine pushesa’s onto the stack to indicate how many morea’s there are than
b’s, or b’s onto the stack to indicate how many moreb’s there are thana’s. At the end of the
string it transitions to statea0 if there are morea’s thanb’s; otherwise, it transitions to stateb0.
Statesa0, a1 anda2 determine the number of excessa’s (mod 3). If the machine reaches the
stack end marker in statea1, then there were morea’s thanb’s, and the excess has a remainder
of 1 when divided by three. This means that the input string isin B1, and the PDA accepts. The
operation when the number ofb’s exceeds the number ofa’s is similar.

Justification 2: The languageB3 = {s | #a(s) ≥ #b(s)} is context free. For example, it is
generated by the rules

S → aT | T a | SS

T → ǫ | aT b | bT a | T T

The CFLs are closed under intersection with regular languages and the language

B4 = {s | ((#a(s) − #b(s) mod 3) = 1}

is regular. Thus,B5 = B3 ∩B4 is context free, and we observe thatB5 = B1 ∩B3 as well. By a
similar argument, the language

B6 = {s | #a(s) ≤ #b(s)}

is context-free, andB1 ∩ B6 is context free as well. Because the CFLs are closed under union,

(B1 ∩ B3) ∪ (B1 ∩ B6)
= B1 ∩ (B3 ∪ B6)
= B1 ∩ Σ∗

= B1

is context-free.

2

B2 is not context free. Letp be a proposed pumping lemma constant.
Let s = apb2pap.
Let u, v, x, y, z be any strings such thats = uvxyz, |vxy| ≤ p and|vy| > 1.
Because|vxy| ≤ p, it cannot includea’s from the firstap substring and from the lastap substring.
Thus,uv0xy0z = uxz is of the formaibjak where one of the following three conditions holds:

vy contain symbols from the firstap. In this case,i < k, anduxz 6∈ B2.

vy contain symbols from the lastap. In this case,i > k, anduxz 6∈ B2.

vy contains noa’s. In this case,j < 2i, anduxz 6∈ B2.

LanguageB2 does not satisfy the conditions of the pumping lemma for context-free languages. There-
foreB2 is not context-free.

3. (35 points) Define

BalancedConcat (A, B) = {s | ∃x ∈ A, y ∈ B. (|x| = |y|) ∧ s = xy}

(a) (15 points) Show an example of a regular language forA and a regular language forB such thatBalancedConcat (A, B)
is not regular. Give a short justification for your answer (myjustification is one sentence long).

Solution: LetΣ = {a,b}, A = L(a∗), andB = L(b∗). For this choice ofA andB, BalancedConcat (A, B)
is the set of all strings of the formanbn for anyn ≥ 0 and is not context free as we have shown many
times.

(b) (20 points) Show that for any regular languagesA andB, BalancedConcat(A, B) is context free.
(my solution is eight sentences long).

Solution: BecauseA andB are regular, there are DFAs that recognize them. Build a PDA whose finite
control includes the transitions for these two DFAs. The PDAstarts by pushing an endmarker symbol
onto the stack and moving to the initial state ofA. While performing transitions ofA, the PDA pushes
one marker onto the stack for each symbol that it reads. Whenver the PDA is in an accepting state
of A, it can make anǫ-move to the start state ofB (with no change to the stack). While performing
transitions ofB, the PDA pops one symbol off the stack for each symbol read. Ifthe PDA is in
an accepting state ofB, it can pop the stack-end-marker off of the stack and accept.This machine
recognizesBalancedConcat (A, B); therefore,BalancedConcat (A, B) is context free.

3

4. (35 points) Let

B = {M#w#n | M describes a Turing machine,w describes a string, andn is the binary
representation of an integer, such that TMM halts after at mostn steps
when run with inputw.}

(a) (10 points)
Show thatB is Turing decidable. You don’t need a detailed proof. It is sufficient to sketch an algorithm
for deciding whether or not a string is inB.
(My solution has four sentences.)

Solution: A TM, MB can first check to make sure that its input is of the formM#w#n whereM

describes a TM,w describes an input string forM , andn is the binary encoding of an integer. It then
simulatesM running with inputw for at mostn steps. IfM halts by the end of this simulation,MB

accepts. Otherwise,MB rejects.

BecauseB is Turing decidable, there is a TM,MB that decidesB. Now, consider a non-deterministic TM,
NH , that on inputM#w scans to the end of the input and appends#n, wheren is a string selected non-
deterministically from{0,1}∗. MachineNH then returns its head to the left end of the tape and runs machine
MB on the tape. IfMB accepts, thenNH accepts and ifNH rejects, thenNH rejects.

(b) (10 points) Draw the state transition diagram for a non-deterministicTM that appends#n to the end of its
tape, wheren can be the binary encoding ofany integer. Your TM should start in stateq0 and transition to
statep0 when it has finished writingn.

Solution:

R

#,Rq0 q1

0,R
1,R

p0
,R

(c) (15 points) MachineNH acceptsM#w iff machineM halts when run with inputw. Thus,NH recognizes
languageHALT . We can construct a deterministic Turing machine,MH , that simulatesNH . We also
know thatHALT is not decidable. Why isn’tMH (equivalently,NH) a decider forHALT?

Solution: NH can loop. In particular, it can write an arbitrarily long string for n and never get around to
invokingMB. Likewise, a deterministic TM that simulatesNH can loop, because it can simulateNH

testing longer and longer strings forn.

4

