CpSc 421 Midterm 2 November 5, 2008

Do problem 0 and any three of problems 1-4.
If you attempt more than three of problems 1-4, please ineisdich ones you want graded — otherwise, I'll make an
arbitrary choice.

Graded on a scale of 100 points.
You can attempt from 105 to 110 points depending on whichlprob you choose. If you score over 100, you get to
keep the extra credit.

0. (5 points) Your name;_Mark Greenstreet Your student #9.1093188 x 10~3!

Question Score

0

TOTAL

1. (30 pointg) Let G = (V, X, R, Expr) be the CFG with

V =
E =
and rules
Expr — Variable
Variable — Letter
Constant — Digit

Letter — a b
Digit — O 1

{Ezpr, Variable, Constant, Letter, Digit}
{0,1,...,9,a,b,...,z,+*}

Constant

Variable Letter |

|
|
| Constant Digit
|
|

Ezpr + Exzpr | Expr™* Expr
Variable Digit

| z
| 9

(a) (15 points) This grammar is ambiguous. Demonstrate this byidgatwo different parse trees that gener-

ate the string

X+12*y

If you use the back side of one of these pages or one of the pkgés at the back, please writteg page
#' where# is the page number here.

Solution:

Expr E Expr
IO ; TION
Expr + Expr ! Expr * Expr
pd I | SIS
Variable Expr * Expr ! Expr + Expr Variable
| [v 7 | |
Letter Constant Variable E Variable Constant Letter
X Constant Letter i Letter Constant y
Ty i Ty
Constant Digit y E X Constant Digit
Digit 2 i Digit 2
1 E 1

(b) (15 points) Write an unambiguous grammar that generates the Emguage a§'. You can just write the
rules. If a variable in your grammar has the same rules asiabkaiin the grammar above, you can write

Solution:

Ezxpr
Term
Factor
Variable
Constant
Letter
Digit

Ll

Term
Factor
Variable
same a%sy
same ass
same asy
same ass

V — same as%s

| Ezpr+Term
| Term* Factor
| Constant

The “rules” for Letter and Digit do not need to be included to get full credit.

2. (35 pointg) One of the two languages below is context-fre@ points), and the other is nofl6 points). Identify
which is which and justify your answers. For both languagdes; {a,b}.
By = {s| (abs(#a(s) — #b(s)) mod 3) = 1}
By = {s|3n.s=a"b*"a"}
where#a(s) indicates the number da’s in s, #b(s) indicates the number df’s, and abs(z) denotes the
absolute value af.

Solution:

B is context free.
Justification 1: We can construct a PDA that recognizésas shown below:

ac—-a
a,b—¢
be—~b ga—+=¢
ba»e

. As,s»s
€

g,a+>¢

gb—¢

eb—¢

In stateq;, this machine pushess onto the stack to indicate how many mars there are than
b’s, or b’s onto the stack to indicate how many mdaxs there are tham'’s. At the end of the
string it transitions to state, if there are mora’s thanb'’s; otherwise, it transitions to stabg.
Statesag, a1 anday determine the number of exceas (mod 3). If the machine reaches the
stack end marker in statg, then there were mor&'s thanb’s, and the excess has a remainder
of 1 when divided by three. This means that the input stririg 8;, and the PDA accepts. The
operation when the number bfs exceeds the number afs is similar.

Justification 2: The languageBs = {s | #a(s) > #b(s)} is context free. For example, it is
generated by the rules

S — aT | Ta | SS
T — € | aTb | bTa | TT

The CFLs are closed under intersection with regular langsiagd the language
By = {s | ((#als) — #b(s) mod 3) = 1}

is regular. ThusBs; = B3 N By is context free, and we observe thiag = B; N Bs as well. By a
similar argument, the language

Be = {s | #a(s) < #b(s)}
is context-free, an®, N Bg is context free as well. Because the CFLs are closed undenuni

(Bl n B3) U (Bl N BG)
= BN (B3 U Bﬁ)
= BiNXx*
- B

is context-free.

B, is not context free. Lep be a proposed pumping lemma constant.

Lets = aPb? ar.

Letu, v, z, y, z be any strings such that= uvzyz, [vay| < p and|vy| > 1.

Becausguvzy| < p, it cannot includea’s from the firsta? substring and from the last’ substring.

Thus,uv’zy’z = uxz is of the forma’b’a* where one of the following three conditions holds:
vy contain symbols from the first?. In this casej < k, anduzz ¢ Bs.
vy contain symbols from the lasf. In this casej > k, anduzz ¢ Bs.
vy contains na’s. In this casej < 2i, anduxz ¢ Bs.

LanguageB: does not satisfy the conditions of the pumping lemma forednfree languages. There-
fore By is not context-free.

3. (35 points) Define
BalancedConcat(A,B) = {s|3xe€ A,y B.(|Jz|=|y|) As=zy}

(a) (15 pointg Show an example of a regular languageAand a regular language f& such thatBalanced Concat (A, B)
is not regular. Give a short justification for your answer (junstification is one sentence long).

Solution: LetY = {a,b}, A = L(a*),andB = L(b*). For this choice oA andB, BalancedConcat(A, B)
is the set of all strings of the fora*b™ for anyn > 0 and is not context free as we have shown many
times.

(b) (20 pointg Show that for any regular languagésand B, BalancedConcat (A, B) is context free.
(my solution is eight sentences long).

Solution: Becaused and B are regular, there are DFAs that recognize them. Build a Pbéss finite
control includes the transitions for these two DFAs. The Fists by pushing an endmarker symbol
onto the stack and moving to the initial statecofWhile performing transitions ofl, the PDA pushes
one marker onto the stack for each symbol that it reads. Wérehe PDA is in an accepting state
of A, it can make ar-move to the start state @ (with no change to the stack). While performing
transitions of B, the PDA pops one symbol off the stack for each symbol readhdfPDA is in
an accepting state d8, it can pop the stack-end-marker off of the stack and accEpis machine
recognizePBalanced Concat (A, B); therefore,BalancedConcat (A, B) is context free.

4. (35 pointg) Let

B = {M#w#n | M describes a Turing machine,describes a string, andis the binary
representation of an integer, such that TiMhalts after at most steps
when run with inputw.}

(d) (10 points)
Show thatB is Turing decidable. You don’'t need a detailed proof. It iffisient to sketch an algorithm
for deciding whether or not a string is i8.
(My solution has four sentences.)

Solution: A TM, Mp can first check to make sure that its input is of the fabitw#n where M
describes a TMyw describes an input string fdr/, andn is the binary encoding of an integer. It then
simulates)M running with inputw for at mostn steps. I1fM halts by the end of this simulatiof/ 5
accepts. Otherwisé{ g rejects.

BecauseB is Turing decidable, there is a TM{/p that decidesB. Now, consider a non-deterministic TM,
Ny, that on inputM#w scans to the end of the input and appe#ds wheren is a string selected non-
deterministically from{0, 1}*. MachineNy then returns its head to the left end of the tape and runs mechi
Mp on the tape. IfV/ g accepts, theiy accepts and iV rejects, thenVy rejects.

(b) (10 pointg) Draw the state transition diagram for a non-determiniBlitthat append#gn to the end of its
tape, where: can be the binary encoding afy integer. Your TM should start in statg and transition to
statepy when it has finished writing.

Solution:

O
2O —R 0—~1,R

()™ (1))

(c) (15 pointg) MachineNy acceptsV#w iff machine M halts when run with inpu. Thus, Ny recognizes
languageHALT. We can construct a deterministic Turing machiféy, that simulatesVy. We also
know thatHA LT is not decidable. Why isnd/ (equivalently,Ny) a decider forHALT?

Solution: Ny can loop. In particular, it can write an arbitrarily longisty for n and never get around to
invoking M . Likewise, a deterministic TM that simulatdg; can loop, because it can simulate;
testing longer and longer strings for

