Do problem 0 and any three of $1,2,3$ and 4. Graded on a scale of 100 points.
0. (4 points) Your name: \qquad Your student \#: \qquad

1. (32 points) Consider the two languages described below:

$$
\begin{aligned}
& A_{1}=\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{m} \mathrm{~d}^{n} \\
& A_{2}=\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{n} \mathrm{~d}^{m}
\end{aligned}
$$

where m and n integers that are greater than or equal to 0 .
(a) (16 points): One of these languages is a CFL. Which one? Give a CFG for it.
(b) (16 points): One of these languages is not a CFL. Which one? Give a short proof.
2. (32 points) Let B be the language: $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \# \mathrm{a}(w) \leq 2 \# \mathrm{~b}(w)\right\}$.
(a) (24 points) Give a CFG for B.
(b) (8 points) Give a derivation for the string abaaabab using your grammar.

For partial credit, you can describe a PDA for part (a) and forfeit the points for part (b) (24 points for a correct PDA).
3. (32 points) Let Σ^{*} be a finite alphabet and $C_{1}, C_{2} \subseteq \Sigma^{*}$ be two languages. Define

$$
\begin{aligned}
\operatorname{shuffle}\left(C_{1}, C_{2}\right)=\{ & \left\{w \mid \exists x_{1}, x_{2}, \ldots, x_{k} \in \Sigma^{*} . \exists y_{1}, y_{2}, \ldots, y_{k} \in \Sigma^{*} .\right. \\
& \left.\left(x_{1} \cdot x_{2} \cdots x_{k} \in C_{1}\right) \wedge\left(y_{1} \cdot y_{2} \cdots y_{k} \in C_{2}\right) \wedge\left(w=x_{1} \cdot y_{1} \cdot x_{2} \cdot y_{2} \cdots x_{k} \cdot y_{k}\right)\right\}
\end{aligned}
$$

Note that this says that the concatenation of strings x_{1} through x_{k} produces a string in C_{1}; the individual x_{i} might or might not be strings in C_{1}. Likewise for the strings y_{1} through y_{k}.
Are the CFLs closed under shuffle? Give a short proof with your answer.
4. (32 points) Consider the two languages described below:
$D_{1}=\{M \mid$ for any string w, if Turing machine M accepts w, it does so in at most 1000 steps $\}$
$D_{2}=\{M \mid$ for any string w, if Turing machine M accepts w, it does so in at least 1000 steps $\}$
(a) (16 points): One of these languages is Turing decidable. Which one? Give a short justification for your answer.
(b) (16 points): One of these languages is not Turing decidable. Which one? Give a short justification for your answer.
(c) (8 points, extra credit): Is the undecidable language (i.e. D_{1} or D_{2}) Turing recognizable, co-recognizable, both or neither? Give a short justification for your answer.

You must give a separate justification for each part. In particular, you can't answer (a) and then say that the other language must be undecidable because the problem stated there was one of each.
Hint: If you're stuck, you can think about how you would solve the problem if "at most (least) 1000 steps" was replaced with "at most (least) 1 step" or "... 2 steps."

