Do problem 0 and any three of problems 1-5.
If you attempt more than three of problems 1-5, please indicate which ones you want graded - otherwise, I'll make an arbitrary choice.

Graded on a scale of 100 points.
You can attempt from 89 to 110 points depending on which problems you choose. If you score over 100, you get to keep the extra credit.
0. (5 points) Your name: Mark Greenstreet Your student \#: $\underline{1.602178480 \times 10^{-19}}$

1. (24 points)
(a) ($\mathbf{8}$ points) Let A_{1} be the language recognized by the NFA below:

Write a regular expression that generates A_{1}.
Solution: a a ab (bab)*
(b) ($\mathbf{8}$ points) Let A_{2} be the language recognized by the NFA below:

Draw the state diagram for a DFA that recognizes A_{2}.

Solution: The NFA recognizes all strings that end with two consecutives a's or two consecutive b's. The DFA below recognizes the same language.

(c) (8 points) Draw the state diagram for a NFA that recognizes $A_{1} \cdot A_{2}$.

Solution 1: Just draw an ϵ-edge from the final state of the NFA for A_{1} to the start state of the NFA for A_{2} :

Solution 2: Looking at the solution 1, we can see that the (bab)* loop at the accepting state of the NFA for A_{1} is subsumed by the $(\mathrm{a} \cup \mathrm{b})^{*}$ loop at the start state of the NFA for A_{2}. Thus, we can drop the states and edges for the (bab$)^{*}$ loop without changing the language recognized by the NFA:

2. (30 points) Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, and let $B=\left\{w \mid \exists i, j . w=\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{i+j}\right\}$. Prove that B is not regular.

Solution 1:

Let p be a proposed pumping lemma constant for B.
Let $w=\mathrm{a}^{p} \mathrm{~b}^{p} \mathrm{C}^{2 p} \in B$.
Let x, y and z be three strings such that $x y z=w,|x y| \leq p$ and $|y|>1$. Note that $x y \in L\left(\mathrm{a}^{*}\right)$.
Thus, $x y^{0} z=\mathrm{a}^{p-|y|} \mathrm{b}^{p} \mathrm{C}^{2 p}$ which is not in B because $(p-|y|)+p=2 p-|y| \neq 2 p$.

Solution 2:

Let $B^{\prime}=B \cap \mathrm{a}^{*} \mathrm{c}^{*}=\mathrm{a}^{n} \mathrm{c}^{n}$. Because the regular languages are closed under intersection and $\mathrm{a}^{*} \mathrm{c}^{*}$ is regular, B^{\prime} would be regular if B were regular. It was shown in class (and in Sipser) that $\mathrm{a}^{n} \mathrm{~b}^{n}$ (and thus $a^{n} c^{n}$) is not regular; therefore B is not regular either.
3. (30 points) Let C_{1} be a language with alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Let

$$
C_{2}=\left\{w \in \Sigma^{*} \mid a^{|w|} \in C_{1}\right\}
$$

Show that if C_{1} is regular, then C_{2} is regular as well.
It is sufficient, for example, to describe how to construct an NFA for C_{2} given a NFA or DFA (you choose) for C_{1}. You don't have to give all of the formal details, just describe enough that it is clear that you could write the formulas if you had sufficient time. For example, my solution consists of four English sentences.

Solution 1:

Consider the state diagram for a DFA that recognizes C_{1}. Discard all edges except for those labeled a. Replace the edges labeled a with edges labeled Σ. This produces a NFA that recognizes C_{2}.

Solution 2:

Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a (Sipser-style) NFA that recognizes $C_{1} \cap \mathrm{a}^{*}$. For all $q \in Q$ and $c \in \Sigma$ define $\delta^{\prime}(q, c)=\delta(q$, a $)$. Then, $N^{\prime}=\left(Q, \Sigma, \delta^{\prime}, q_{0}, F\right)$ is a NFA that recognizes C_{2}.
Explanatory comment (not needed to get full credit): N^{\prime} works by replacing every edge labeled with a with an edge labeled with Σ. Thus, N^{\prime} accepts any string of length n iff N accepts a ${ }^{n}$.
4. (35 points) Let D_{1} be a language with alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Let

$$
D_{2}=\left\{w \in \Sigma^{*} \mid \exists x \in D_{1} \cdot x=\mathrm{a}^{n} \mathrm{~b}^{n} \text { with } n=|w|\right\}
$$

Show that if D_{1} is regular, then D_{2} is regular as well.
It is sufficient to describe how to construct an NFA for D_{2} given a NFA or DFA for D_{1}. You don't have to give all of the formal details, just describe enough that it is clear that you could write the formulas if you had sufficient time.

Solution (long): Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that recognizes language D_{1} with $Q=\left\{q_{0}, q_{1}, \ldots q_{m-1}\right\}$ where m is the number of states of M. I'll now construct languages $C_{0} \ldots C_{m-1}$ that are each regular, and whose union is D_{2}. Let $M_{a, i}=\left(Q, \Sigma, \delta, q_{0},\left\{q_{i}\right\}\right)$. Clearly, $L\left(M_{a, i}\right)$ is regular, and by question 3 , the language

$$
A_{i}=\left\{w \mid a^{|w|} \in L\left(M_{a, i}\right)\right\}
$$

is regular as well. Note that A_{i} is the set of all strings w such that machine M reaches state q_{i} after reading $a^{|w|}$.
Likewise, we can let $M_{b, i}=\left(Q, \Sigma, \delta, q_{i}, F\right)$ and

$$
B_{i}=\left\{w \mid b^{|w|} \in L\left(M_{b, i}\right)\right\}
$$

is regular - it is the set of all strings w such that M can reach a state in F by starting in state q_{i} and reading $\mathrm{b}^{|w|}$.
Let $C_{i}=A_{i} \cap B_{i} . C_{i}$ is regular because A_{i} and B_{i} are regular and the regular languages are closed under intersection. Language C_{i} is the set of all strings w such that M can start in state q_{0}, read a ${ }^{|w|}$ to reach state q_{i}, then read $\mathrm{b}^{|w|}$ to reach a state in F. Thus, if $w \in L\left(C_{i}\right)$ then $w \in D_{2}$. Finally, note that if $w \in D_{2}$, then there is some state q_{i} such that $\delta\left(q_{0}, \mathrm{a}^{|w|}\right)=q_{i}$ and $\delta\left(q_{i}, \mathrm{~b}^{|w|}\right) \in F$. Thus, $w \in C_{i}$. We conclude that

$$
D_{2}=\bigcup_{i=0}^{m-1} C_{i}
$$

and D_{2} is regular because the regular languages are closed under union.
Solution (short): Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that recognizes language D_{1} with $Q=\left\{q_{0}, q_{1}, \ldots q_{m-1}\right\}$. Let A_{i} be the set of all strings w, such that machine M reaches state q_{i} after reading a ${ }^{|w|}$. Let B_{i} be the set of all strings w such that machine M reaches a state in F after starting in state q_{i} and reading $\mathrm{b}^{|w|}$. A_{i} and B_{i} are both regular by the solution to question 3 . String w is in D_{2} iff there is some state q_{i} such that $\delta\left(q_{0}, \mathrm{a}^{|w|}\right)=q_{i}$ and $\delta\left(q_{i}, \mathrm{~b}^{|w|}\right) \in F$. Thus,

$$
D_{2}=\bigcup_{i=0}^{m-1} A_{i} \cap B_{i}
$$

and D_{2} is regular because the regular languages are closed under intersection and union.
Solution (alternate): Construct two NFAs: the first NFA starts in state q_{0} and moves forward on a-edges of M. The second NFA starts in any state in F and moves backward along b-edges of M. A string is in D_{2} iff these two NFAs can reach the same state after $|w|$ moves. This is basically building a product machine that recognizes D_{2}. We've never discussed product NFA in class (only product DFAs), but a solution that notes that extrapolation will get full credit.
5. (40 points) Let $\Sigma=\{0,1\}$, and let E_{1} and E_{2} be the languages defined below:

$$
\begin{aligned}
& E_{1}=\left\{w \mid \exists k \in \mathbb{Z}, x \in \Sigma^{*} .(|w|=10 k) \wedge(|x|=k) \wedge\left(w=x^{10}\right)\right\} \\
& E_{2}=\left\{w \mid \exists k \in \mathbb{Z}, x \in \Sigma^{*} .(|w|=10 k) \wedge(|x|=10) \wedge\left(w=x^{k}\right)\right\}
\end{aligned}
$$

One of these languages is regular and the other is not. Identify which language is which.
(a) (20 points) Describe a DFA, NFA or regular expression for the language that is regular - you don't need to draw a complete state diagram or write the entire expression; just describe how to construct it.
Solution: E_{2} is regular.
Because $|x|=10$ and $|\Sigma|=2$, there are 2^{10} possible values for x in the definition of E_{2}. Let α_{i} be a regular expresion that matches the $i^{t h}$ such string. For example, we could define:

$$
\begin{array}{rcc}
\alpha_{0} & =0000000000 \\
\alpha_{1} & =0000000001 \\
\alpha_{2} & =0000000010 \\
\alpha_{3} & =0000000011 \\
\alpha_{4} & = & 0000000100 \\
\vdots & \vdots & \vdots \\
\alpha_{1023} & = & 1111111111
\end{array}
$$

Now, note that E_{2} is generated by the regular expression

$$
\beta=\bigcup_{i=0}^{1023} \alpha_{i}^{*}
$$

This is a finite union. Thus, β is a regular expression, and therefore E_{2} is regular.
(b) ($\mathbf{2 0}$ points) For the other language, prove that it is not regular.

Solution: E_{1} is not regular.
Let p be a proposed pumping lemma constant for E_{1}.
Let $w=\left(0^{p} 1\right)^{10} \in E_{1}$.
Let x, y and z be any three strings with $x y z=w,|x y| \leq p$ and $|y| \geq 1$.
Note that $x y$ is a prefix of the first $p 0$'s of w.
Thus, $x y^{2} z=0^{p+|y|} 1\left(0^{p} 1\right)^{9}$ which is not in E_{1}. Therefore, E_{1} is not regular.

