Do problems 0 and 1 and any two of 2,3 , or 4 . Graded on a scale of 100 points.
0. (5 points) Your name: Mark Greenstreet Your student \#: $\underline{00000000}$

1. ($\mathbf{3 5}$ points) (Sipser exercise 1.47)

Let $\Sigma=\{1, \#\}$ and let

$$
A=\left\{w \mid w=x_{1} \# x_{2} \# \cdots \# x_{k}, k \geq 0, \text { each } x_{i} \in 1^{*} \text { and }(i \neq j) \Rightarrow\left(x_{i} \neq x_{j}\right)\right\}
$$

In English, A is the set of all strings consisting of zero or more strings of 1's separated by \#'s such that no two of these strings of 1's have the same length. For example 1, 1\#11\#111, 1111\#\#11\#1111111 and 111\#1111\#11111\#11111 are in A, but 1\#1 and 1\#11\#111\#11 are not.
Prove that A is not regular.

Solution:

(a) Let p be a proposed pumping lemma constant for A.
(b) Let $u=1^{p} \# 1^{p+1} \# \cdots \# 1^{2 p}$.

Note that we can write $u=u_{0} \# u_{1} \# \cdots \# u_{k}$, where $k=p$ and $u_{i}=1^{p+i}$.
(c) Let $x y z=u$ such that $|y|>0$ and $|x y| \leq p$.
(d) Let $v=x y^{2} z$.

Note that we can write $v=v_{0} \# v_{1} \# \cdots \# v_{k}$, where $k=p, v_{0}=1^{p+|y|}$ and for $1 \leq i \leq p, v_{i}=1^{p+i}$.
Because $1 \leq|y| \leq p$, we conclude $p+1 \leq(p+|y|) \leq 2 p$ and $v_{0}=v_{p+|y|}$. Thus, $v \notin A$.
(e) A does not satisfy the conditions of the pumping lemma. Therefore, A is not regular.

2. ($\mathbf{3 0}$ points)

(a) (10 points) Give a DFA that recognizes the language $a(a \cup b) * b \cup b(b \cup a)^{*} a$. The input alphabet is $\{a, b\}$. Drawing a state diagram for your DFA is sufficient.

Solution:

(b) (10 points) Give a NFA that recognizes the language $\left(a b^{*}\right)^{*} c \cup(a b)^{*}$. The input alphabet is $\{a, b, c\}$. Drawing a state diagram for your NFA is sufficient.

Solution:

(c) ($\mathbf{1 0}$ points) Give a regular expression corresponding to the NFA:

Solution: $\underline{\left(a^{*} b \cup c\right)^{*}}$
3. (35 points) Let B be any language. Define

$$
f(B)=\left\{w \mid \exists x \in B \cdot x=w w^{\mathcal{R}}\right\}
$$

where $x^{\mathcal{R}}$ denotes the reverse of string x. For example,

$$
f(\{\text { cattac, doggod, mouseesoum }\})=\{\text { cat, dog, mouse }\}
$$

Show that if B is any regular language, then $f(B)$ is regular as well. It is sufficient to describe the construction of a DFA, NFA or regular expression for $f(B)$ and/or use closure properties that we have already proven. You don't need to give a formal proof that your construction is correct.

Solution: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that recognizes B. My solution builds an NFA, N, that runs M backwards starting from a state in F. The construction of N is pretty much the same as the one used in $H W 2$ to show that the regular languages are closed under string reversal. Let's say that M reaches state q after reading w. If N can reach state q by reading w, then that means that M will reach a state in F by reading $w^{\mathcal{R}}$. This means that M accepts $w w^{\mathcal{R}}$. In fact, these are the only strings that M can accept.
The preceeding paragraph is an acceptable answer to the question. I'll also include the details of the construction of N, but won't require them in a solution (as long as the solution points out the connection with the previously solved problem from the homework).

$$
\begin{aligned}
N & =\left(Q \cup\left\{q_{x}\right\}, \Sigma, \delta^{\mathcal{R}}, q_{x}, X\right) \\
q_{x} & \notin Q \\
\delta^{\mathcal{R}}(q, c) & =\{p \in Q \mid \delta(p, c)=q\}, \quad \text { for } q \in Q \\
\delta^{\mathcal{R}}\left(q_{x}, \epsilon\right) & =F
\end{aligned}
$$

and X doesn't matter, because we're just going to combine N with M to create the machine that recognizes $f(B)$. Here it is:

$$
\begin{aligned}
N^{\prime} & =\left(Q \times\left(Q \cup\left\{q_{x}\right\}\right), \Sigma, \delta^{\prime},\left(q_{0}, q_{x}\right), F^{\prime}\right) \\
\delta^{\prime}((p, q), c) & =\{\delta(p, c)\} \times \delta^{\mathcal{R}}(q, c) \\
F^{\prime} & =\{(q, q) \in Q \times Q\}
\end{aligned}
$$

4. (35 points) Ever had a broken keyboard that dropped or repeated characters? If so, this problem is for you. Let Σ be a finite alphabet, and let $R E(\Sigma)$ denote all regular expressions over strings in Σ^{*}. Define flakeyKeys : $\Sigma^{*} \rightarrow R E(\Sigma *)$ as shown below

$$
\begin{aligned}
\text { flakeyKeys }(\epsilon) & =\epsilon \\
\text { flakeyKeys }(x \cdot c) & =x \cdot c^{*}, \quad \text { for any } c \in \Sigma
\end{aligned}
$$

In other words, flakeyKeys (x) maps the string x to a regular expression that matches any string that can be derived from x by dropping or repeating symbols. For example, flakeyKeys(cat) is the regular expression c*a*t*

Let C be any language. Define

$$
\text { flakeyKeys }(C)=\{w \mid \exists x \in C . w \in \text { flakeyKeys }(x)\}
$$

Show that if C is regular, then flakeyKeys (C) is regular as well. It is sufficient to describe the construction of a DFA, NFA or regular expression for flakeyKeys (C) and/or use closure properties that we have already proven. You don't need to give a formal proof that your construction is correct.

Solution 1: The key idea in my solution is to construct a GNFA (see Sipser p. 70ff, esp. def. 1.64) that recognizes flakeyKeys (C).
Let $M=\left(Q, \Sigma, \delta, q_{a}, F\right)$ be a DFA that recognizes C. Let $Q^{\prime}=Q \cup\left\{q_{s}, q_{a}\right\}$ where q_{s} and q_{a} (i.e. "start" and "accept") are not in Q. Let

$$
\begin{aligned}
G & =\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{s},\left\{q_{a}\right\},\right. & & \text { a GNFA } \\
\delta^{\prime}\left(q_{a}, q_{0}\right) & =\epsilon & & \\
\delta^{\prime}\left(q_{a}, q\right) & =\emptyset, & & q \neq q_{0} \\
\delta^{\prime}(p, q) & =c_{1}^{*} \cup c_{2}^{*} \cup \cdots \cup c_{k}^{*}, & & \left(c \in\left\{c_{1}, c_{2}, \ldots c_{k}\right\} \Leftrightarrow \delta(p, c)=q, p, q \in Q\right. \\
\delta^{\prime}\left(q, q_{a}\right) & =\epsilon, & & \text { if } q_{a} \in F \\
\delta^{\prime}\left(q, q_{a}\right) & =\emptyset, & & \text { if } q_{a} \notin F \\
\delta^{\prime}\left(q_{a}, q\right) & =\emptyset, & & q \in Q^{\prime}
\end{aligned}
$$

By construction, $L(G)=$ flakeykeys (C), and $L(G)$ is regular because GNFAs recognize the regular languages. Thus, flakeyKeys (C) is regular.
Solution 2: One might object that I said you would never need to know the details of the proof that every DFA can be converted into a regular expression. If so, here's an alternative solution.
Let $M=\left(Q, \Sigma, \delta, q_{a}, F\right)$ be a DFA that recognizes C. For each state $q_{i} \in Q$ and each symbol $c \in \Sigma$ such that M has an outgoing arc from q labeled c, define a new state, $q_{i, c}$. Add an ϵ arc from q_{i} to $q_{i, c}$ and another ϵ arch from $q_{i, c}$ to $\delta\left(q_{i}, c\right)$. Finally, add a self-loop arc from $q_{i, c}$ to $q_{i, c}$ labelled c. This produces an NFA that recognizes flakeyKeys (C).

