
CpSc 421 Midterm 1 October 11, 2006

Do problems 0 and 1 and any two of 2, 3, or 4. Graded on a scale of 100 points.

0. (5 points) Your name: Mark Greenstreet Your student #: 00000000

1. (35 points) (Sipser exercise 1.47)
Let Σ = {1,#} and let

A = {w | w = x1#x2# · · ·#xk, k ≥ 0, eachxi ∈ 1∗ and(i 6= j) ⇒ (xi 6= xj)}

In English,A is the set of all strings consisting of zero or more strings of1’s separated by#’s such that no
two of these strings of1’s have the same length. For example1, 1#11#111, 1111##11#1111111 and
111#1111#11111#11111 are inA, but1#1 and1#11#111#11 are not.

Prove thatA is not regular.

Solution:

(a) Letp be a proposed pumping lemma constant forA.

(b) Letu = 1p#1p+1# · · ·#12p.
Note that we can writeu = u0#u1# · · ·#uk, wherek = p andui = 1p+i.

(c) Letxyz = u such that|y| > 0 and|xy| ≤ p.

(d) Letv = xy2z.
Note that we can writev = v0#v1# · · ·#vk, wherek = p, v0 = 1p+|y| and for1 ≤ i ≤ p, vi = 1p+i.
Because1 ≤ |y| ≤ p, we concludep + 1 ≤ (p + |y|) ≤ 2p andv0 = vp+|y|. Thus,v 6∈ A.

(e) A does not satisfy the conditions of the pumping lemma. Therefore,A is not regular.

1

2. (30 points)

(a) (10 points) Give a DFA that recognizes the languagea(a ∪ b)∗b ∪ b(b ∪ a)∗a.
The input alphabet is{a,b}. Drawing a state diagram for your DFA is sufficient.

Solution:

a

b

a

a

b
a

b

b

a

b

(b) (10 points) Give a NFA that recognizes the language(ab∗)∗c ∪ (ab)∗.
The input alphabet is{a,b,c}. Drawing a state diagram for your NFA is sufficient.

Solution:

ε b
a

ε

c

b

a ε

(c) (10 points) Give a regular expression corresponding to the NFA: a,b
a

b

b,c

Solution: (a∗b ∪ c)∗

2

3. (35 points) Let B be any language. Define

f(B) = {w | ∃x ∈ B. x = wwR}

wherexR denotes the reverse of stringx. For example,

f({cattac, doggod, mouseesoum}) = {cat, dog, mouse}

Show that ifB is any regular language, thenf(B) is regular as well. It is sufficient to describe the construction
of a DFA, NFA or regular expression forf(B) and/or use closure properties that we have already proven. You
don’t need to give a formal proof that your construction is correct.

Solution: Let M = (Q, Σ, δ, q0, F) be a DFA that recognizesB. My solution builds an NFA,N , that runsM
backwards starting from a state inF . The construction ofN is pretty much the same as the one used in
HW2 to show that the regular languages are closed under string reversal. Let’s say thatM reaches state
q after readingw. If N can reach stateq by readingw, then that means thatM will reach a state inF by
readingwR. This means thatM acceptswwR. In fact, these are the only strings thatM can accept.

The preceeding paragraph is an acceptable answer to the question. I’ll also include the details of the
construction ofN , but won’t require them in a solution (as long as the solutionpoints out the connection
with the previously solved problem from the homework).

N = (Q ∪ {qx}, Σ, δR, qx, X)
qx 6∈ Q

δR(q, c) = {p ∈ Q | δ(p, c) = q}, for q ∈ Q

δR(qx, ǫ) = F

andX doesn’t matter, because we’re just going to combineN with M to create the machine that recognizes
f(B). Here it is:

N ′ = (Q × (Q ∪ {qx}), Σ, δ′, (q0, qx), F ′)
δ′((p, q), c) = {δ(p, c)} × δR(q, c)

F ′ = {(q, q) ∈ Q × Q}

3

4. (35 points) Ever had a broken keyboard that dropped or repeated characters? If so, this problem is for you.
Let Σ be a finite alphabet, and letRE (Σ) denote all regular expressions over strings inΣ∗.
DefineflakeyKeys : Σ∗ → RE (Σ∗) as shown below

flakeyKeys(ǫ) = ǫ

flakeyKeys(x · c) = x · c∗, for anyc ∈ Σ

In other words,flakeyKeys(x) maps the stringx to a regular expression that matches any string that can be
derived fromx by dropping or repeating symbols. For example,flakeyKeys(cat) is the regular expression
c∗a∗t∗

Let C be any language. Define

flakeyKeys(C) = {w | ∃x ∈ C. w ∈ flakeyKeys(x)}

Show that ifC is regular, thenflakeyKeys(C) is regular as well. It is sufficient to describe the construction of a
DFA, NFA or regular expression forflakeyKeys(C) and/or use closure properties that we have already proven.
You don’t need to give a formal proof that your construction is correct.

Solution 1: The key idea in my solution is to construct a GNFA (see Sipser p. 70ff, esp. def. 1.64) that
recognizesflakeyKeys(C).
Let M = (Q, Σ, δ, qa, F) be a DFA that recognizesC. LetQ′ = Q∪{qs, qa} whereqs andqa (i.e. “start”
and “accept”) are not inQ. Let

G = (Q′, Σ, δ′, qs, {qa}, a GNFA
δ′(qa, q0) = ǫ

δ′(qa, q) = ∅, q 6= q0

δ′(p, q) = c∗1 ∪ c∗2 ∪ · · · ∪ c∗k, (c ∈ {c1, c2, . . . ck} ⇔ δ(p, c) = q, p, q ∈ Q

δ′(q, qa) = ǫ, if qa ∈ F

δ′(q, qa) = ∅, if qa 6∈ F

δ′(qa, q) = ∅, q ∈ Q′

By construction,L(G) = flakeykeys(C), andL(G) is regular because GNFAs recognize the regular
languages. Thus,flakeyKeys(C) is regular.

Solution 2: One might object that I said you would never need to know the details of the proof that every DFA
can be converted into a regular expression. If so, here’s an alternative solution.

Let M = (Q, Σ, δ, qa, F) be a DFA that recognizesC. For each stateqi ∈ Q and each symbolc ∈ Σ
such thatM has an outgoing arc fromq labeledc, define a new state,qi,c. Add anǫ arc fromqi to qi,c and
anotherǫ arch fromqi,c to δ(qi, c). Finally, add a self-loop arc fromqi,c to qi,c labelledc. This produces
an NFA that recognizesflakeyKeys(C).

4

