
CpSc 421 Final Exam December 6, 2008

Do anyfive of problems 1-10.
If you attempt more than five of problems 1-10, please indicate which ones you want graded – otherwise, I’ll make an
arbitrary choice.

Graded on a scale of 100 points.
You can attempt from 68 to 110 points depending on which problems you choose. If you score over 100, you get to
keep the extra credit.

1. (12 points)

(a) (6 points) Write a regular expression that generates the language that is recognized by the DFA below:

b

a a a a

b b b
a,b

Solution: ((ǫ ∪ a ∪ aa ∪ aaa)b)∗aa

(b) (6 points) Draw the state transition diagram for a DFA or NFA that recognizes the language generated by
the regular expression(ab)∗(aba)∗.

Solution:

a

a

b
b

2. (12 points) Let G be the CFG with start variableS, terminalsa andb, and rules:

S → T | U
T → ǫ | aTbb
U → ǫ | baUa

(a) Which of the strings below are generated byG?

aabbbb baa bbaaaa aaaabb bababaaaa baabaa

Solution: aabbbb baa bababaaaa

(b) Write a grammar that generates the language:

{ambn | (m = 2n + 3) ∨ (3m = 5n)}

Solution:
S → TU | V
T → aaa
U → ǫ | aaUb
V → ǫ | aaaaa V bbb

1

3. (12 points) Let Equiv be a Java method that takes as its input the source code for twoJava methods and
determines whether or not they return the same values for allpossible values of their input parameters. For
example, consider the methods:

int mult1(int a, int b) {
return(a ∗ b);

}

int mult2(int a, int b) {
int p = 0;
for(int i = 0; i < a; i++)

p = p+b;
return(p);

}

int mult3(int a, int b) {
return(a & b);

}

Equiv(〈mult1〉, 〈mult2〉) should returntrue, but Equiv(〈mult1〉, 〈mult3〉) should returnfalse. Here,〈mult1〉
denotes the source code for methodmult1 and likewise for the other methods.

Show that it is impossible to write an implementation ofEquiv that works for all possible Java methods. In
particular, show that if a method such asEquiv could be written, then you could use it to solve the halting
problem. Assume that all of these methods can use unlimittedamounts of memory.

Solution: In class we defined a function,accept(M, w, n) which returns true if TMM accepts stringw after
at mostn steps. This function is Turing computable and could be implemented as a Java method. Let
accept be such a Java method. Likewise, we can have a Java methodhalt(〈M〉, 〈w〉, n) which returns
true iff the Turing machine described by〈M〉 halts after at mostn steps when run with input〈w〉. Given a
particular TM,M , and a particular input stringw for M , I’ll define

boolean MacceptsW(java.math.BigInteger n) {
return(halt(〈M〉, 〈w〉, n););

}

I used aBigInteger to allow calls tohalt with n larger than the largest Javaint (or long). I’ll accept
solutions that don’t point out this detail. Now, I’ll define

boolean alwaysFalse(java.math.BigInteger n) {
return(false);

}

If MacceptsW is equivalent toalwaysFalse, thenM does not halt when run with inputw. Thus I could
use theEquiv method to decide the (non-)halting problem. This shows thatsuch a method cannot be
written.

Note: Equiv is the Java equivalent of languageE from homework 9, question 5, but that was a “hard”
question and this is an easy one. In particular, you only haveto show that you could useEquiv to solve
the halting problem and not the “harder” problems considered in the homework version.

2

4. (12 points)

(a) (2 points) Give a one or two sentence definition of what it means for a language to be in NP.

Solution: A language is in NP if it can be decided by a non-deterministicTuring machine that runs in
polynomial time.

(b) (2 points) Give a one or two sentence definition of what it means for a language to be NP hard.

Solution: A language,B, is NP hard if any language in NP is polynomial time reducibleto B.

(c) (2 points) Give a one or two sentence definition of what it means for a language to be NP complete.

Solution: A language is NP complete if it is both in NP and NP hard. NP complete problems are in
some sense the “hardest” problems in NP; for example, the appear to be harder than languages that
can be decided in polynomial time by a deterministic (i.e. real) computer although such polynomial
time languages are also in NP.

(d) (6 points) State which of the languages below are in NP, which are NP hard, and which are NP complete:

i. Strings consisting of an equal number ofa’s andb’s.

ii. Strings that describe a Turing machine that halts when run with the empty string as its input.

iii. Strings that describe a satisfiable Boolean formula.

iv. Strings that are the binary encoding of prime number.

v. Strings that describe a graph,G = (V, E), and an integerk, such that there is a setU ⊆ V with
|U | = k such that for every edge(v1, v2) ∈ E eitherv1 ∈ U or v2 ∈ U or both.

vi. The empty language.

Solution:
In NP: Every language mentioned above except ii.

NP hard: Languages ii, iii, and v are NP hard.
For one point of extra credit, point out that languages i, andiv are NP hard iffP = NP .

NP complete: Languages iii, and v are NP complete.
As above, langauges i and iv are NP complete iffP = NP .

5. (20 points) A context-free grammar isright linear iff every rule is of the formA → xB or A → x whereA and
B are variables andx is a string of terminals. Prove that ifG is a right-linear context-free grammar, thenL(G)
is regular.

Solution 1: Let G = (V, Σ, R, S) be a right-linear CFG. We can assume without loss of generality that all
rules ofG are of the formA → cB, A → Z, or Z → ǫ with A, B ∈ V andc ∈ Σ and whereZ is a new
variable for which there is exactly one rule:Z → ǫ. To show this, we have to handle three types of rules
allowed in right-linear grammars that aren’t in this simplified version:

A → B with x = ǫ): Delete this rule, and for each rule of the formB → xC add a ruleA → xC, and
for each rule of the formB → x, add a rule of the formA → x.

A → xB with |x| > 1: Delete this rule. Letx = c1 · · · ck with c1, . . . , ck ∈ Σ. Add new variablesAB1,
. . .ABk−1 and rulesA → c1AB1, AB1 → c2AB2, . . .ABk−2 → ck−1ABk−1, andABk−1 → ckB.

A → x: Let x = c1 · · · ck with c1, . . . , ck ∈ Σ. Add new variablesAB1, . . .ABk−11 and rulesA →
c1A1, A1 → c2A2, . . .Ak−2 → ck−1Ak−1, andAk−1 → ckZ. If A → ǫ, we simply add the rule
A → Z.

It is straightforward to show that each of these transformations preserves the language of the grammar.

Define an NFA,N = (V, Σ, ∆, S, {Z}) be a NFA where there is a transition from stateA to stateB on
symbolc iff A → cB is a rule inR. If A → Z, then there is an edge with labelǫ from stateA to stateZ.

I’ll now show thatL(N) = L(G). Because the languages of NFAs are regular, this shows that the lan-
guages generated by right-linear grammars are regular as well.

3

Let w ∈ L(G): Then there is some derivation ofw using the rules ofG. We have

S ⇒ c1V1 ⇒ c1c2V2 ⇒ . . . xiVi ⇒ . . . xi+1Vi+1 ⇒ . . . wZ ⇒ . . . w

A simple induction argument shows that wexiVi ⇒ xi+1Vi+1 iff there is somec ∈ Σ such that
xi+1 = xic andVi → cVi+1 ∈ R. Another simple induction argument shows thatVi ∈ ∆(S, xi)
from which we concludeZ ∈ ∆(S, w) which means thatw ∈ L(N) as required.

Let w ∈ L(N): Let w = c1 · · · ck then there is some sequence of statesq0 . . . qk with q0 = S, qk = Z
and for alli ∈ 0 . . . k − 1, qi+1 ∈ ∆(qi, ci+1). A simple induction argument then shows that for all

i ∈ 1
. . . k − 1, S

∗
⇒ c1 · · · ciVi+1 and thereforeS

∗
⇒ wZ ⇒ w. Thusw ∈ L(G) as required.

Solution 2: Here’s a shorter solution using a GNFA as described in Sipserchapter 1.3.
Let G = (V, Σ, R, S) be a right linear grammar. Define a GNFA (as described in Sipser, chapter 1.3) with
statesV ∪{S′, Z} whereS′ andZ are new symbols. ForA, B ∈ V , there the edge fromA to B is labeled
with the regular expression ⋃

x | (A→xB)∈R′

x

The edge fromA to B has a label of∅ if there are no such rules. Likewise, the edge fromA to Z is labeld
with the regular expression ⋃

x | (A→x)∈R′

x

There is an edge fromS′ to S with a label ofǫ, and edges fromS′ to all other states labeled∅. Observe
that there are no incoming edges toS′ and no outgoing edges fromZ. Thus,F is a GNFA. Therefore,
L(F) is regular.

I’ll now show thatL(F) = L(G). Let s ∈ L(F). Then, we can find statesq1, . . . , qk such thatq1 = S′,
qk = Z, and stringsw1, . . . wk such thats = w1 · · ·wk, and for each1 ≤ i < k, the edge fromqi to qi+1

is labeled with a regular expression that matcheswi. By the construction ofF , we can show that for each
1 ≤ i ≤ k, S

∗
⇒ w1 · · ·wiqi+1 and thereforeS

∗
⇒ w1 · · ·wkZ ⇒ s. Thus,s ∈ L(G). A similar argument

shows that ifs ∈ L(G), then we can use a derivation ofs to find an accepting run ofF and therefore
s ∈ L(F). Therefore,L(F) = L(G), andL(G) is regular as required.

6. (20 points) Let A = {〈M〉 | L(M) = (L(M))R} where〈M〉 is a string describing Turing machineM , and
(L(M))R is the language consisting of all strings whose reversals are inL(M).

Determine whether or notA is Turing decidable, and give a short proof.

Solution 1: This is a property of the language of the Turing machineM . It is a non-trivial property: for
example, a TM that accepts the empty language is inA but a TM that only accepts01 is not inA. Thus,
Rice’s theorem applies (See HW9, Q4), andA is not Turing decidable.

Solution 2: OK, you’re not required to know Rice’s theorem. Here’s a reduction fromATM . GivenM andw,
construct a new TM,M ′ that on inputs does the following:

If s = 01, accept.
Else if s 6= 10, reject.
Else

RunM on inputw.
If M acceptsw, then accept.
Else ifM rejectsw, then reject.
ElseM loops and we never get here.

With this construction,M ′ recognizes{01, 10} if M acceptsw, andM ′ recognizes{01} otherwise. Thus,
M ′ ∈ A iff M acceptsw. I’ve reducedATM to A; therefore,A is undecidable.

4

7. (20 points) Let spaceBound(M ,w ,n) be true iff Turing machineM accesses at mostn different tape locations
when run with inputw. Let

B1 = {M#w | spaceBound(M, w, 2|w|)}

B2 = {M | ∀w. spaceBound(M, w, 2|w|)}

One of these langauages is decidable and one is not. Determine which is which and give a short proof for each
answer.

Solution:

B1 is decidable: LetΓ be the tape alphabet ofM . SimulateM for 2|w||Γ|2
|w| steps. IfM ever steps

outside of the first2|w| tape squares, then reject. IfM halts without exceeding this space bound, then
accept. Otherwise,M is still running. Note that there are2|w||Γ|2

|w| possible configurations with that
use at most2|w| tape squares. Therefore,M is looping in the first2|w| tape squares and we can accept.

B2 is not decidable: Given a TMM and an input stringw for M , build a new TM,M ′ that on inputx
does the following:

If x is a not valid computaitonal history forM acceptingw,
thenM ′ rejects.

Else /*x is a valid computational history forM acceptingw */
M ′ writes an infinite string of0’s on its tape.

A TM can check a computational history using|x| + 1 space (the+1 is because it reads the blank
follwoing x. Thus,M ′ ∈ A iff M does not acceptw. I’ve reducedATM to A; ATM is undecidable,
thereforeA is undecidable as well.

Note: Youcan’t use Rice’s theorem for this problem because it isnot a question about the language that
M accepts, it is a question about how much spaceM uses.

8. (20 points) Let G1 = (V1, E1) andG2 = (V2, E2) be graphs with nodesVi and edgesEi (with i ∈ {1, 2}).
TheSUBGRAPH ISOMORPHISMproblem is to determine whether or notG2 is isomorphic to a subgraph ofG1.
Show thatSUBGRAPH ISOMORPHISMis NP-complete.

Hints:

• Consider a reduction fromCLIQUE.

• “GraphG is asubgraph of graphH if the nodes ofG are a subset of the nodes ofH , and the edges ofG
are the edges ofH on the corresponding nodes.” (Sipser, page 11).

• GraphsG andH areisomorphic if the nodes ofG can be reordered so that it is identical toH . (see Sipser,
exercise 7.11).

• See figure 1.

Solution:

GRAPH ISOMORPHISM is in NP: A list of vertices fromG and how they pair with vertices fromH
suffices as a certificate. A deterministic TM can check in polynomial time that each vertex fromH
has a corresponding vertex fromG and the equivalence of this subgraph ofG with H .

GRAPH ISOMORPHISMis in NP-hard: Let(G, k) be an instance of CLIQUE. Ifk is greater than the
number of nodes ofG, then reject immediately. Otherwise, letH be the complete graph withk nodes.
G has a clique of sizek iff H is a isomorphic to a subgraph ofG. Thus, this is a polynomial time
reduction fromclique to subgraph isomorphism which proves thatsubgraph isomorphism is NP
hard.
Note: I first checked thatk is at most the number of nodes inG. Otherwise, if one specified a clique
size that was exponentially larger than the number of nodes in G, then the rest of the reduction would
not be polynomial time. I won’t take off points for solutionsthat miss this detail, but I’ll give a point
for extra credit if you noted it.

5

(1, 2, 3, 4, 5, 7, 6)

Graph G1 Graph G2

Graph G2 G1

A
B C

D

E F G

H
I

J

K

L

M

N

1

2 3 4

5

6

7

is isomorphic to a subgraph of by the following correspondence of

vertices: (D, E, F, G H, O, P)

O

P

Q

Figure 1: A subgraph isomorphism example.

GRAPH ISOMORPHISMis in NP-complete: I’ve shown above thatsubgraph isomorphism is in NP and
that it is NP hard. Therefore,subgraph isomorphism is NP complete.

9. (25 points) Let D be a DFA,G be a CFG, andM be a TM. Define

A(M, D) = {y | ∃x ∈ L(M). xy ∈ L(D)}
B = {〈M, D, y〉 | y ∈ A(M, D)}

C(M, G) = {y | ∃x ∈ L(M). xy ∈ L(G)}

(a) (9 points) Prove thatA(M, D) is regular.

Solution: Let D = (Q, Σ, δ, q0, F) and let

Q′ = {q ∈ Q | ∃x ∈ L(M). δ(q0, x) = q}

Note thatQ′ is finite (even though we may not be able to decide what states are in it!). Now, note that

A(M, D) = {y | ∃x ∈ L(M). xy ∈ L(D)}, def.A(M, D)
= {y | ∃x ∈ L(M). δ(q0, xy) ∈ F}, def.L(D)
= {y | ∃x ∈ L(M). δ(δ(q0, x), y) ∈ F}, prop. ofδ
= {y | ∃q ∈ Q′. δ(q, y) ∈ F}, def.Q′

=
⋃

q∈Q′{y | δ(q, y) ∈ F}

Now, letDq = (Q, Σ, δ, q, F). This yields:

A(M, D) =
⋃

q∈Q′ L(DQ)

Thus,A(M, D) is the finite union of regular languages. Therefore,A(M, D) is regular.

(b) (8 points) Prove thatB is Turing recognizable but not Turing decidable.

Solution: Given D andy, let X = {〈M〉 | ∃x. (x ∈ L(M)) ∧ (xy ∈ L(D))}. LanguageX is a
property of the language of TMM , and it is non-trivial. For example, I can chooseD to be a DFA
that recognizes{a} and lety = ǫ. Then〈M〉 ∈ X iff M acceptsa. I can build a TM that only accepts

6

a, and another TM that recognized the empty language. ThusX is not trivial. Rice’s theorem applies
to show thatB is not Turing Decidable.
To show thatB is Turing recognizable, I’ll show that it is recognized by a NTM, N . N just guesses
a string forx. it then runsM on x to verify thatM acceptsx. Finally, N verifies thatxy ∈ L(D).
Because TM’s and NTM’s recognize the same languages,B is Turing recognizable.

(c) (8 points) Prove thatC(M, G) is not necessarily context free.

Solution: Let M be a TM that recognizes{am2

| m ∈ Z
≥0}, and letG be a CFG that recognizes

{anbn | n ∈ Z
≥0}. Then

C(M, G) = {bm2

| m ∈ Z
≥0}

which is not context free.
To show the last claim, letp be a proposed pumping constant forC(M, G), and lets = bp2

. Clearly
s ∈ C(M, G). However, if we pumps we will change its length by an amount between1 andp
which will produce a string ofb’s whose length is not a perfect square and thus is not inC(M, G).
Therefore,C(M, G) does not satisfy the conditions of the pumping lemma and is not context free.

7

Rectangles (1, 2), (1, 2), (1, 2), (1,3), (1,5), (2,3), and (3,6)
can be packed into rectangle (10,4).

Figure 2: A rectangle packing example.

10. (25 points) LetQ, R1, R2, . . .Rk be rectangles. Each rectangle is specified by two integers, one for its width and
the other for its height. TheRECTANGLE PACKINGproblem is to determine if it is possible to place rectangles
R1 . . .Rk in rectangleQ such that none of theRi rectangles overlap. Each rectangle may be placed at an
arbitrary location and with an arbitrary orientation inQ as long as it is contained completely inQ. See figure 2
for an example.

Show thatRECTANGLE PACKING is strongly NP-complete.

For 20 points, you can show thatRECTANGLE PACKING is NP-complete (without showing thestrongly part
required for a 25 point solution).

Solution:

RECTANGLE PACKING is in NP: This one is a little harder than I intended. By “arbitrary location and
arbitrary orientation” I meant arbitrary location on the integer grid and either in the original orientation
or rotated by 90 degrees. I’ll prove that version and accept proofs for that version.
With this restriction, proving thatRECTANGLE PACKING is in NP is straightforward, just guess how
to orient each rectangle and where to put its lower left corner.

RECTANGLE PACKING is strongly NP hard: By reduction from 3-PARTITION. An instance of3-partition
consists of integersb andm, and a set,S, of 3m elements where for eachs ∈ S there is an associated
“weight,” w(s) ∈ Z

+,
∑

s∈S w(s) = mb, and for eachs ∈ S, b/4 < w(s) < b/2. The question is:
canS be partitioned intom sets such that the sum of the elements in each set is equal tob?
Given an instance of 3-PARTITION, construct an instance ofRECTANGLE PACKING with 3m rectan-
gles,R1 throughR3m to be packed into a rectangleQ. TheRi rectangles correspond to the elements
of S. In particular, letS = {s1, . . . s3m} and let rectanglei have width 1 and height(2m)w(si).
RectangleQ has widthm and height2mb. My claim is that this a positive instance ofRECTANGLE

PACKING iff the original 3-PARTITION problem was a positive instance.
Consider a solution toRECTANGLE PACKING. Note that each rectangle has a height of at least2m and
Q has width ofm. Therefore all of the rectangles must be placed in their tall-and-skinny orientation.
In that orientation, each rectangle has a width of 1. Therefore, these rectangle form columns. In par-
ticular, there arem such columns, and these correspond to the subsets that we need for 3-PARTITION.
Because each rectangle has a height,h, with mb/2 < h < mb, and the height ofQ is 2mb, each
column has three rectangles. If the three rectangles for column i areRi,1, Ri,2 andRi,3, place the
corresponding elements ofS into setsi. By the construction of the rectangles, these elements ofS
each have a weight that is the height of the corresponding rectangle divided by2m. Thus, the total
weight of the elements in the set is(2mb)/(2m) = b as required. Thus, this gives us a solution to the
3-PARTITION problem.
Likewise, if we have a solution to the 3-PARTITION problem,S1, S2, . . .Sm, we can construct a
solution to the correspondingRECTANGE PACKINGproblem by arranging the rectangles in columns
as described above, and choosing the rectangles in columni to correspond to the elements ofSi.
Thus, theRECTANGLE PACKINGproblem constructed above has a solution iff the original 3-PARTITION

PROBLEM has a solution.

8

RECTANGLE PACKING is strongly NP-complete: We’ve shown above thatRECTANGLE PACKING is in
NP and that it is strongly NP-hard. Thus,RECTANGLE PACKING is strongly NP complete as claimed.

11. Thexkcd comic (0 points), seehttp://xkcd.com/287/. The obvious choice for the waiter is to bring seven orders
of mixed-fruit as the restaurant patron did not specify thatthe appetizers needed to be distinct.$7 × 2.15 =
$15.05 as required. Now, if we consider each item on the appetizer menu to be a separate element ofS (i.e. no
duplicate appetizers), we first note that the sum over all individual appetizers is$21.80, which means we can
just as well look for which appetizers are not included; theymust total$21.80 − $15.05 = $6.75. We can take
use the pseudo-polynomial, dynamic programming algorithm. Here are feasible amounts (in ascending order):

amount order
2.15 = MF, (i.e. Mixed Fruit)
2.75 = FF, (i.e. French Fries)
3.35 = SS, (i.e. Side Salad)
3.55 = HW, (i.e. Hot Wings)
4.20 = MS, (i.e. Mozzarella Sticks)
4.90 = MF + FF, (yuck!)
5.50 = MF + SS, (for the health freak)
5.70 = MF + HW
5.80 = SP, (i.e. SamplerP late)
6.10 = FF + SS
6.30 = FF + HW, (pub fare?)
6.35 = MF + MS
6.90 = SS + HW

We conclude that there is no way for the waiter to deliver appetizers totaling $15.05 without some duplicatoins
of appetizers.

9

