CpSc 421 Final Exam December 6, 2008

Do anyfive of problems 1-10.
If you attempt more than five of problems 1-10, please indigdtich ones you want graded — otherwise, I'll make an
arbitrary choice.

Graded on a scale of 100 points.
You can attempt from 68 to 110 points depending on which gmoislyou choose. If you score over 100, you get to
keep the extra credit.

1. (12 pointy
(a) (6 points) Write a regular expression that generates the languagestrexognized by the DFA below:

b

Solution: ((eUaUaaUaaa)b)*aa

(b) (6 points) Draw the state transition diagram for a DFA or NFA that ratiags the language generated by
the regular expressiofb)* (aba)*.

Solution:

2. (12 points) Let G be the CFG with start variabl€, terminalsa andb, and rules:

S —- T | U
T — € | aTbb
U — € | baUa
(&) Which of the strings below are generated®y
aabbbb baa bbaaaa aaaabb bababaaaa baabaa
Solution: aabbbb baa bababaaaa
(b) Write a grammar that generates the language:

{a™b" | (m =2n+3)V (3m =b5n)}

Solution:
S — TU |V
T — aaa
U — ¢ | aaUb
V — ¢ | aaaaa Vbbb



3. (12 pointg Let Equiv be a Java method that takes as its input the source code fodawe methods and
determines whether or not they return the same values fqoalible values of their input parameters. For
example, consider the methods:

int multl(int a, int b) { | int mult2(int a, int b) { int mult3(int a, int b) {
return(a = b); intp =0; return(a & b);
} for(inti=0;i<a;i++) | }
p = ptb;
return(p);
}

Equiv({multl), (mult2)) should returrtrue, but Equiv({multl), (mult3)) should returrfalse. Here, (multl)
denotes the source code for metmoditl and likewise for the other methods.

Show that it is impossible to write an implementationkzfuiv that works for all possible Java methods. In
particular, show that if a method such Bquiv could be written, then you could use it to solve the halting
problem. Assume that all of these methods can use unlimatteolints of memory.

Solution: In class we defined a functiongcept (M, w, n) which returns true if TMM accepts stringv after
at mostn steps. This function is Turing computable and could be imiglieted as a Java method. Let
accept be such a Java method. Likewise, we can have a Java me#iid\/), (w), n) which returns
true iff the Turing machine described b¥/) halts after at most steps when run with inpytw). Given a
particular TM, M, and a particular input string for M, I'll define

boolean MacceptsW(java.math.Biginteger n) {
return(halt((M), (w), n););

| used aBiginteger to allow calls tohalt with n larger than the largest Jauat (or long). I'll accept
solutions that don’t point out this detail. Now, I'll define

boolean alwaysFalse(java.math.Biginteger n) {
return(false);
}

If MacceptsW is equivalent taalwaysFalse, thenM does not halt when run with input. Thus | could
use theEquiv method to decide the (non-)halting problem. This shows $hiah a method cannot be
written.

Note: Equiv is the Java equivalent of languagefrom homework 9, question 5, but that was a “hard”
guestion and this is an easy one. In particular, you only haahow that you could usgquiv to solve
the halting problem and not the “harder” problems considé@rehe homework version.



4. (12 pointy

(a) (2 points) Give a one or two sentence definition of what it means for guage to be in NP.

Solution: A language is in NP if it can be decided by a non-determiniBtidng machine that runs in
polynomial time.

(b) (2 points) Give a one or two sentence definition of what it means for guage to be NP hard.
Solution: A language B, is NP hard if any language in NP is polynomial time reductblé.
(c) (2 points) Give a one or two sentence definition of what it means for guage to be NP complete.

Solution: A language is NP complete if it is both in NP and NP hard. NP detepproblems are in
some sense the “hardest” problems in NP; for example, theap be harder than languages that
can be decided in polynomial time by a deterministic (i.@l)reomputer although such polynomial
time languages are also in NP.

(d) (6 points) State which of the languages below are in NP, which are N&, laaad which are NP complete:
i. Strings consisting of an equal numberad$ andb’s.
ii. Strings that describe a Turing machine that halts whenwith the empty string as its input.
ii. Strings that describe a satisfiable Boolean formula.
iv. Strings that are the binary encoding of prime number.

v. Strings that describe a grapfi, = (V, E), and an integek, such that there is a sét C V with
|U| = k such that for every edge, v2) € F eitherv; € U orwvy € U or both.

vi. The empty language.
Solution:
In NP: Every language mentioned above except ii.

For one point of extra credit, point out that languages i, imrade NP hard iffP = N P.

NP complete: Languages iii, and v are NP complete.
As above, langauges i and iv are NP completé’ife N P.

5. (20 points) A context-free grammar igght linear iff every rule is of the formd — xB or A — x whereA and
B are variables and is a string of terminals. Prove thatd is a right-linear context-free grammar, the(G)
is regular.

Solution 1: Let G = (V, %, R, S) be a right-linear CFG. We can assume without loss of gerethiat all
rules of G are of the formA — ¢B, A — Z,orZ — ewith A, B € V andc € ¥ and whereZ is a new
variable for which there is exactly one rulg: — e. To show this, we have to handle three types of rules
allowed in right-linear grammars that aren’t in this sinfiplil version:

A — B with x = ¢): Delete this rule, and for each rule of the folth— 2C add a ruleA — zC, and
for each rule of the fornB — x, add a rule of the formd — .
A — zBwith |z| > 1: Delete this rule. Let = ¢; - - - ¢ With ¢1, ..., ¢, € X. Add new variablesi By,
.. .ABk,1 and rulesA — ClABl, ABl — CQABQ, . .AB]C,Q — CkflAkal, andABk,l — ¢ B.
A— z Letex =c¢y---cpWith e, ...,¢cp € X. Add new variablesiB,, ...AB;_1; and rulesA —
c1A1, Ay — Ay, .. Ao — cp_1Ak_1,andAx_1 — ¢ Z. If A — €, we simply add the rule
A— Z.
It is straightforward to show that each of these transfoionatpreserves the language of the grammar.
Define an NFAN = (V, X, A, S, {Z}) be a NFA where there is a transition from stateo stateB on
symbolciff A — cBisaruleinR. If A — Z, then there is an edge with lakefrom stateA to stateZ.

I'll now show thatZL(N) = L(G). Because the languages of NFAs are regular, this showshbaan-
guages generated by right-linear grammars are regularlas we



Letw € L(G): Then there is some derivation efusing the rules of7. We have
S = Vi = Vs = ...5;V, = ...l‘i+1‘/;+1 = ...wZ = ...w

A simple induction argument shows that weV; = x,1V;; iff there is somec € X such that
xi41 = xic andV; — Vi1 € R. Another simple induction argument shows thate A(S, z;)
from which we conclud&Z € A(S, w) which means thav € L(N) as required.

Letw € L(N): Letw = ¢; - - - ¢, then there is some sequence of states . g, with o = S, g = Z
andforalli € 0...k — 1, git+1 € A(qgi, ciy1). A simple induction argument then shows that for all

i€l k—1,8 = ci---¢;Vip and thereforS = wZ = w. Thusw € L(G) as required.

Solution 2: Here's a shorter solution using a GNFA as described in Sigisapter 1.3.
LetG = (V, %, R, S) be aright linear grammar. Define a GNFA (as described in Biphapter 1.3) with
states U{S’, Z} whereS’ andZ are new symbols. Fot, B € V, there the edge from to B is labeled
with the regular expression
U T

z | (A—zB)ER’

The edge fromd to B has a label of) if there are no such rules. Likewise, the edge frdrto Z is labeld
with the regular expression
X
z | (A—z)ER’

There is an edge frori’ to S with a label ofe, and edges fron$’ to all other states labeldgll Observe
that there are no incoming edges46and no outgoing edges frofi. Thus,F is a GNFA. Therefore,
L(F)is regular.

I'll now show thatL(F) = L(G). Lets € L(F). Then, we can find states, . . ., g, such thay; = 5,
qr = Z, and stringsuvs, . . . wy, such thats = wy - - - wg, and for each < i < k, the edge frony; to ¢; 11

is labeled with a regular expression that matchesBy the construction of”, we can show that for each
1<i<k,S=w-- -w;qi4+1 and therefored = wy - --wipZ = 5. Thus,s € L(G). A similar argument
shows that ifs € L(G), then we can use a derivation efo find an accepting run of" and therefore
s € L(F). ThereforeL(F) = L(G), andL(G) is regular as required.

6. (20 pointg) Let A = {(M) | L(M) = (L(M))®} where(M) is a string describing Turing machird, and
(L(M))* is the language consisting of all strings whose reversalgat (M ).

Determine whether or not is Turing decidable, and give a short proof.

Solution 1: This is a property of the language of the Turing machide It is a non-trivial property: for
example, a TM that accepts the empty language i4 but a TM that only accept3l is not in A. Thus,
Rice’s theorem applies (See HW9, Q4), atis not Turing decidable.

Solution 2: OK, you're not required to know Rice’s theorem. Here’s a itun from Arp,. GivenM andw,
construct a new TM)M’ that on inputs does the following:

If s =01, accept.
Else ifs # 10, reject.
Else
Run M on inputw.
If M acceptsv, then accept.
Else if M rejectsw, then reject.
Else M loops and we never get here.

With this construction)/’ recognizeq01, 10} if M acceptsv, andM’ recognize§01} otherwise. Thus,
M' e Aiff M acceptav. I've reducedAr,, to A; therefore A is undecidable.



7. (20 points) Let spaceBound(M , w, n) be true iff Turing machiné/ accesses at mostdifferent tape locations
when run with inputw. Let

By = {M#w| spaceBound(M,w,?2*)}
By = {M | Yw. spaceBound(M,w, 2"}

One of these langauages is decidable and one is not. Detewhiich is which and give a short proof for each
answer.

Solution:

B, is decidable: LeT be the tape alphabet dff. SimulateM for 21“/|T|2'v| steps. IfA ever steps
outside of the firsg/*! tape squares, then reject.lf halts without exceeding this space bound, then
accept. Otherwisél/ is still running. Note that there ag*!|TI"|2'»| possible configurations with that
use at mos2!*! tape squares. Thereford, is looping in the firse!*! tape squares and we can accept.

Bs is not decidable: Given a TM/ and an input stringv for M, build a new TM,M’ that on inputz
does the following:

If 2 is a not valid computaitonal history fad acceptingw,
thenM’ rejects.
Else /*z is a valid computational history fav/ acceptingw */
M’ writes an infinite string 00’s on its tape.
A TM can check a computational history usifhg + 1 space (thet-1 is because it reads the blank
follwoing z. Thus,M'’ € A iff M does not accept. I've reducedAr;; to A; A7y, is undecidable,
thereforeA is undecidable as well.

Note: Youcan't use Rice’s theorem for this problem because iitasa question about the language that

M accepts, itis a question about how much spateses.

8. (20 pointg) Let G; = (V1, F1) andGs = (V4, E») be graphs with nodeg; and edged; (with i € {1,2}).
The SUBGRAPH ISOMORPHISMproblem is to determine whether or i@ is isomorphic to a subgraph 6f;.
Show thatSUBGRAPH ISOMORPHISMS NP-complete.

Hints:

e Consider a reduction fromLIQUE.

e “Graph@ is asubgraph of graphH if the nodes ofG are a subset of the nodes&f and the edges aF
are the edges dff on the corresponding nodes.” (Sipser, page 11).

e Graphs7 andH areisomorphic if the nodes of# can be reordered so that it is identicalHo (see Sipser,
exercise 7.11).

e See figure 1.

Solution:

GRAPH ISOMORPHISMis in NP: A list of vertices fromG and how they pair with vertices fromy
suffices as a certificate. A deterministic TM can check in polyial time that each vertex frod
has a corresponding vertex fraghand the equivalence of this subgraphtowith H.

GRAPH ISOMORPHISMis in NP-hard: Let(G, k) be an instance of CLIQUE. It is greater than the

number of nodes af, then reject immediately. Otherwise, Btbe the complete graph withnodes.
G has a clique of sizé iff H is a isomorphic to a subgraph 6f. Thus, this is a polynomial time
reduction fronclique to subgraph isomorphism which proves thasubgraph isomorphism is NP
hard.
Note: | first checked théat is at most the number of nodes@ Otherwise, if one specified a clique
size that was exponentially larger than the number of nadés then the rest of the reduction would
not be polynomial time. | won't take off points for solutiotigat miss this detail, but I'll give a point
for extra credit if you noted it.



Graph G, is isomorphic to a subgraph @&; by the following corresponden:
vertices: (D,E,F,GH,O,PF—= (1,2,3,4,5,7,6)

Figure 1: A subgraph isomorphism example.

GRAPH ISOMORPHISMis in NP-complete: I've shown above ttaibgraph isomorphism is in NP and
that it is NP hard. Thereforsubgraph isomorphism is NP complete.

9. (25 pointg) Let D be a DFA,G be a CFG, and/ be a TM. Define

AM,D) = {y|3zeL(M).zyc L(D)}
B = {(M,D,y)|yec AM,D)}
C(M,G) = {y|3zeL(M). zye L(G)}

(a) (9 points) Prove thatd(M, D) is regular.
Solution: Let D = (Q, %, 6, qo, F') and let

Q" = {qe€Q|3rve L(M).d(q,r) =q}

Note that)’ is finite (even though we may not be able to decide what sta¢eis &!). Now, note that

AM,D) = {y|3xe L(M).zye L(D)}, def. A(M, D)
= {y|3Ix € L(M). 6(q0,7y) € F}, def. L(D)
= {y|3z e L(M).((q,x),y) € F}, prop.ofs
= {yl3qe Q" dqy) € F}, def.Q’

= Ugpeqlyldlay) € F}
Now, letD, = (Q, %, d, g, F'). This yields:
AM, D) = Useq L(De)
Thus,A(M, D) is the finite union of regular languages. Therefot€), D) is regular.

(b) (8 points) Prove thatB is Turing recognizable but not Turing decidable.

Solution: Given D andy, let X = {(M) | 3z. (x € L(M)) A (zy € L(D))}. LanguageX is a
property of the language of TM/, and it is non-trivial. For example, | can chooBeto be a DFA
that recognize$a} and lety = e. Then(M) € X iff M accepts. | can build a TM that only accepts



a, and another TM that recognized the empty language. Thissnot trivial. Rice’s theorem applies
to show thatB is not Turing Decidable.

To show thatB is Turing recognizable, I'll show that it is recognized by @M, N. N just guesses
a string forz. it then runsM on z to verify thatM acceptse. Finally, N verifies thatry € L(D).
Because TM’s and NTM'’s recognize the same languageés,Turing recognizable.

(c) (8 points) Prove thatC (M, G) is not necessarily context free.

Solution: Let M be a TM that recognize§a™ | m € 7=}, and letG be a CFG that recognizes
{a"b™ | n € Z=°}. Then
C(M,G) = {b™ |m ez}

which is not context free.

To show the last claim, lei be a proposed pumping constant (), G), and lets = v Clearly
s € C(M,G). However, if we pumps we will change its length by an amount betweeand p
which will produce a string ob’s whose length is not a perfect square and thus is n6t(it/, G).
ThereforeC(M, G) does not satisfy the conditions of the pumping lemma andtisotext free.



Rectangles (1, 2), (1, 2), (1, 2), (1,3), (1,5), (2,3), and (3,
can be packed into rectangle (10,4).

Figure 2: A rectangle packing example.

10. @5 points) Let@, R, Ro, ... Ry be rectangles. Each rectangle is specified by two integeedow its width and
the other for its height. ThRECTANGLE PACKING problem is to determine if it is possible to place rectangles
Ry ...Ry in rectangle@ such that none of th&; rectangles overlap. Each rectangle may be placed at an
arbitrary location and with an arbitrary orientation(has long as it is contained completelyGh See figure 2
for an example.

Show thalRECTANGLE PACKINGIs strongly NP-complete.

For 20 points, you can show thaRECTANGLE PACKING is NP-complete (without showing trerongly part
required for a 25 point solution).

Solution:

RECTANGLE PACKINGIs in NP: This one is a little harder than | intended. By “ardiy location and
arbitrary orientation” | meant arbitrary location on thégiger grid and either in the original orientation
or rotated by 90 degrees. I'll prove that version and accegufg for that version.

With this restriction, proving tha®ECTANGLE PACKINGIS in N P is straightforward, just guess how
to orient each rectangle and where to put its lower left corne

RECTANGLE PACKINGIs strongly NP hard: By reduction from BARTITION. An instance oB-partition
consists of integersandm, and a setS, of 3m elements where for eashe S there is an associated
“weight,” w(s) € Z*, Y, g w(s) = mb, and for eachs € S, b/4 < w(s) < b/2. The question is:
cansS be partitioned intan sets such that the sum of the elements in each set is equfal to
Given an instance of 2ARTITION, construct an instance &fECTANGLE PACKING with 3m rectan-
gles, R, throughRs,, to be packed into a rectanglg The R, rectangles correspond to the elements
of S. In particular, letS = {s1,...ss3n} and let rectanglé have width 1 and heigh®m)w(s;).
RectangleR has widthm and heighmb. My claim is that this a positive instance RECTANGLE
PACKING iff the original 3-PARTITION problem was a positive instance.

Consider a solution tRECTANGLE PACKING. Note that each rectangle has a height of at I2asand

@ has width ofm. Therefore all of the rectangles must be placed in thewaad-skinny orientation.
In that orientation, each rectangle has a width of 1. Theesfihese rectangle form columns. In par-
ticular, there aren such columns, and these correspond to the subsets that déon@ePARTITION.
Because each rectangle has a heightyith mb/2 < h < mb, and the height of) is 2mb, each
column has three rectangles. If the three rectangles fomwot are R; 1, R; 2 andR; 3, place the
corresponding elements 6finto sets;. By the construction of the rectangles, these elemenss of
each have a weight that is the height of the correspondirtgmgle divided by2m. Thus, the total
weight of the elements in the set(Bmb)/(2m) = b as required. Thus, this gives us a solution to the
3-PARTITION problem.

Likewise, if we have a solution to the BarTITION problem, Sy, So, ...S,,, wWe can construct a
solution to the correspondir®ECTANGE PACKING problem by arranging the rectangles in columns
as described above, and choosing the rectangles in caltmeorrespond to the elements$f

Thus, theRECTANGLE PACKINGproblem constructed above has a solution iff the origineh&TITION
PROBLEM has a solution.



RECTANGLE PACKING is strongly NP-complete: We've shown above tR&ECTANGLE PACKINGIS in
NP and that it is strongly NP-hard. ThiRs CTANGLE PACKINGIs strongly NP complete as claimed.

11. Thexkcd comic  points), seehttp://xkcd.com/287/. The obvious choice for the waiter is to bring seven orders
of mixed-fruit as the restaurant patron did not specify thatappetizers needed to be distingt. x 2.15 =
$15.05 as required. Now, if we consider each item on the appetizeun®be a separate element®fi.e. no
duplicate appetizers), we first note that the sum over alviddal appetizers i$21.80, which means we can
just as well look for which appetizers are not included; thayst total$21.80 — $15.05 = $6.75. We can take
use the pseudo-polynomial, dynamic programming algoritiere are feasible amounts (in ascending order):

amount order
2.15 = MF, (i.e. Mixed Fruit)
2.75 = FF, (i.e. French Fries)

335 = S§, (i.e. Side Salad)

3.55 = HW, (i.e. Hot Wings)

420 = MS, (i.e. Mozzarella Sticks)
490 = MF + FF, (yuck!)

550 = MF + 55, (for the health freak)
570 = MF+HW

580 = SP, (i.e. SamplerPlate)

6.10 = FF+SS

6.30 = FF+ HW, (pubfare?)

635 = MF+MS

6.90 = SS+HW

We conclude that there is no way for the waiter to deliver éppes totaling $15.05 without some duplicatoins
of appetizers.



