
CpSc 421 Final Exam December 15, 2006

Do problem zero andsix of problems 1 through 9. If you write down solutions for more that six problems, clearly
indicate those that you want graded. Note that problems can be worth 12, 15 or 20 points: you can attempt between
84 and 108 points depending on the problems that you choose. This exam will be graded on a scale of 100 points.

0. (3 points) If you have read and understood the instructions in the previous paragraph, write

I have read the instructions and understand that I am supposed to solve six of the nine problems; that
I can thereby attempt between 84 and 108 total points; and that the exam is graded on a scale of 100.

as your answer to this problem.

Solution: I have read the instructions and understand that I am supposed to solve six of the nine
problems; that I can thereby attempt between 84 and 108 total points; and that the exam is
graded on a scale of 100.

1. (12 points) Let #a(w) be the number ofa’s in w and#b(w) be the number ofb’s in w. Draw the transition
diagram for an NFA that recognizes the languageA1 defined below:

A1 = {w ∈ {a,b}∗ | ∃x, y, z. (w = xyz) ∧ (#a(y) ≥ #b(y) + 3)}

In other words, theA1 contains those strings that contain some substring (possibly the entire string itself) that
has three morea’s thanb’s.

Solution:

a,b0 3

a,b
a a

b

a

b

1 2

It’s also possible to turn this into a DFA, just add an arc fromstate 1 back to state 0 labeled “b”, and
change the label on the self-arc for state 0 from “a,b” to “b”.Because every DFA is an NFA, this is also
an acceptable answer.

2. (20 points) Let Σ be a finite alphabet. Forx, y ∈ Σ∗ with |x| = |y|, define thedistance betweenx andy as the
number of symbols for whichx andy differ. For those who like formulas:

dist(ǫ, ǫ) = 0
dist(x · c, y · c) = dist(x, y), x, y ∈ Σ∗; c ∈ Σ
dist(x · c, y · d) = dist(x, y) + 1, x, y ∈ Σ∗; c, d ∈ Σ; c 6= d

Let A be a language. Define

threeStrikes(A) = {x | ∃y ∈ A (|y| = |x|) ∧ (dist(x, y) < 3)}
notBad(A) = {x | ∃y ∈ A. (|y| = |x|) ∧ (dist(x, y) ≤ |x|/3)}

(a) (10 points) Show that ifA is a regular language, thenthreeStrikes(A) is also regular.

Hint: My solution has five sentences.

Solution: LetD = (Q, Σ, δ, q0, F) be a DFA that recognizesA. DefineN3s = (Q×{0, 1, 2}, Σ, δ3s, (q0, 0), F×
{0, 2, 2}) where

δ3s((q, n), c) = {(δ(q, c), n)} ∪ {(q′, n + 1) | ∃c′ ∈ Σ. q′ = δ(q, c′)}, n < 2
δ3s((q, 3), c) = {(δ(q, c), 3)}

N3s uses the second component of its state to count the number of mismatch symbols, and it uses its
non-determinism to “guess” where and what these mismatch symbols are.L(N3s) = threeStrikes(A),
andL(N3s) is regular. Thus,threeStrikes(A) is regular as required.

(b) (2 points) Show a languageA1 such thatA1 andnotBad(A1) are both regular.

Solution: Let A1 = Σ∗. Clearly,notBad(A1) = Σ∗ which is regular.
Note that∅, any finite language, and many other languages would work as well. For those who don’t
think it’s obvious thatnotBad(Σ∗) = Σ∗, here’s the proof. Lety be any string inΣ∗. Note that
dist(y, y) = 0 ≤ |y|/3. Thusy ∈ notBad(Σ∗) as claimed.

(c) (2 points) Show another languageA2 such thatA2 is regular andnotBad(A2) is not regular.

Solution: Let Σ = {a, b} andA2 = a∗.

(d) (6 points) Prove that for your choice ofA2, notBad(A2) is not regular.

Solution:
Let p > 0 be a proposed pumping lemma constant fornotBad(A2).
Let w = bpa2p. w ∈ notBad(A2) becausea3p ∈ A2 anddist(w, a3p) = p = |w|/3.
Let x, y, andz be any strings such thatw = xyz, |xy| ≤ p and|y| > 1.
Clearly,y = bk, for somek > 0. Thus,xy2z = bp+ka2p. The only string inA2 that is comparable to

bp+ka2p is a3p+k, anddist(bp+ka2p, a3p+k) = p+k > (3p+k)/3. Thus,xy2z 6∈ notBad(A2).
notBadA2 does not satisfy the conditions of the pumping lemma for regular languages. Therefore,

it is not regular.

3. (12 points) Let
B1 = {x | ∃w ∈ {a,b}∗. x = w#wR}
B2 = {x | ∃w ∈ {a,b}∗. x = w#wR#w}

(a) (6 points) Give a CFG forB1.

Solution:
S0 → aSa | bSb | #

(b) (6 points) Prove thatB2 is not a CFL.

Solution:
Let p > 0 be a proposed pumping lemma constant forB2.
Let s = ap#ap#ap. Clearly,s ∈ B2 – no justification of this claim is needed, but for those who are

in doubt, letw = ap. w ∈ {a,b}∗; wR = w; ands = w#wR#w.
Let u, v, x, y, andz be any strings withuvxyz = s, |vy| > 0, and|vxy| ≤ p.
Because|vxy| ≤ p, it overlaps at most two of thew or wR substrings ofs. Thus,uv2xy2z changes

the number ofa’s in one or two of these substrings but not in all three (or none). This shows that
uv2xy2z 6∈ B2.

B2 does not satisfy the conditions of the pumping lemma for CFLs. Therefore, it is not context-free.

4. (15 points) As in question 3, let

B2 = {x | ∃w ∈ {a,b}∗. x = w#wR#w}

Show thatB2 is a CFL.

Hint: Consider the proof thatanbncn is a CFL (e.g, HW 6, Q1.e).

Solution: Note that

B2 = {w | 6 ∃x, y, x ∈ {a,b}∗. w = x#y#z}
∪ {w | ∃x, y, z ∈ {a, b}∗. (w = x#y#z) ∧ (x 6= yR)}
∪ {w | ∃x, y, z ∈ {a, b}∗. (w = x#y#z) ∧ (yR 6= z)}

Now note that

{w | 6 ∃x, y, x ∈ {a,b}∗. w = x#y#z} is regular, and therefore a CFL.
{w | ∃x, y, z ∈ {a, b}∗. (w = x#y#z) ∧ (x 6= yR)} is recognized by a PDA that does the following:

0. Pushes an end-of-stack marker,$ onto the stack.
1. Pushes eacha or b that it sees onto the stack until it encounters the first#. This is thex string.
2. Pops thex string off the stack while reading they string. The PDA uses its finite state to record if

it finds a pair of symbols that don’t match or if|x| 6= |y|.
3. After the second#, the PDA verifies that the rest of the string is in{a, b}∗.
4. The PDA accepts if it saw thatx 6= y in step 2 and the string has two#’s.

Thus,{w | ∃x, y, z ∈ {a, b}∗. (w = x#y#z) ∧ (x 6= yR)} is a CFL.
{w | ∃x, y, z ∈ {a, b}∗. (w = x#y#z) ∧ (yR) 6= z} is a CFL by an argument similar to the one for the

previous case.

Thus,B2 is the union of three CFLs. The CFLs are closed under union; therefore,B2 is a CFL.

5. (12 points) Draw the transition diagram for a Turing machine that erases its tape and then continues from state
q1 with the tape head at the left end of the tape. My solution has three states:q0 (the initial state);q1 (the state
the TM enters after erasing its tape and moving back to the left end); andq2 (one more state to get the work
done).

Solution:

20

Σ R
L

Σ , L

1

L

Note that the space symbol is not inΣ. I’m taking advantage of Sipser’s defintion for TM operationthat says
that if the head is at the leftmost square and the transition says to move the head to the left, the head just stays at
the leftmost square (but performs the specified write and state transition).

6. (15 points) Let

A1 = {[M] | There is some non-empty stringw such that[M] reads every symbol ofw when run
with inputw. }

A2 = {[M] | There is some non-empty stringw such that[M] does not read every symbol ofw
when run with inputw. }

(a) (3 points) Is A1 = A2? Give a short justification for your answer.

Solution: No. A machine could read every symbol of some strings but not all.
The statements above are a sufficient answer. Here’s a more detailed explanation for those who are
still in doubt. For example, letM be a machine that recognizes(a ∪ b)∗b(a ∪ b)∗ (i.e. any string in
{a,b}∗ with at least oneb. Let M scan its tape to the right until it encounters ab at which point it
accepts. If it encounters a�, then it rejects. Note thatM reads every symbol in the stringaa but only
the first symbol ofbb. Thus,M ∈ A1 andM ∈ A2. This shows thatA1 6= A2.

(b) (6 points) Is A1 decidable? Justify your answer.

Solution: A1 is decidable. Letw be any string consisting of exactly one symbol from the inputalphabet
of M . M must make at least one move when run with inputc (because the start, accept, and reject
states are distinct by the definition of a TM). Thus,M reads every symbol ofw when run with input
w. In other words,A1 holds for any TM. All a decider has to do is check to make sure that its input is
a valid TM description.

(c) (6 points) Is A2 decidable? Justify your answer.

Solution: A2 is not decidable. I’ll reduceATM to A2. I’ll do this by reducingAtm to Abounded . and
reducingAbounded to A2 where

Abounded = {[M]#w | TM M uses a bounded amount of space when run with inputw. }

First, I’ll reduceATM to Abounded . Let MATM
be a TM that does the following when run with input

[M]#w:
if([M]#w ∈ Abounded) /* reduction toAbounded */

accept; /* M uses unbounded tape on inputw. . . */
/* ∴ it must be looping*/

else {
SimulateM running with inputw, recording each configuration encountered.
if(M accepts) reject;
else if(M rejects) accept;
else if(M repeats a configuration) /* M is looping*/

accept;
}

Now, I’ll reduceAbounded toA2. Let [M] be a TM description andw be an input string tow. Construct
the TM description forM ′ that does the following when run on inputx:
1. Writew on its input tape followed by�′. M ′ then moves its head back to the leftmost tape square.

�′ is a symbol that is not in the tape alphabet ofM , the orginal TM. Note thatM ′ does not erase
its input first; thus there will be some suffix ofx left unread on the tape if|x| > |w| + 1.

2. M ′ now runsM except that if it ever encounters a square with a�′, M ′ does the following:
2.a Letq be the stateM ′ is in when it encounters the�′ symbol.
2.bM ′ writes a� on the tape; moves one square to the right; and enters stateq′ (a differentq′

for eachq). Note that there is always at most one�′ symbol on the tape.
2.cM ′ writes a�′ on the tape; moves one square to the left and returns to stateq.
2.dM ′ continues asM .

Clearly, all of these operations are Turing computable.
Consider the case whereM is bounded on inputw. Let n be the number of tape squaresM touches
when run with inputw. Then, ifM ′ is run with any string of with length greater thann, M ′ will not
read its entire input. Thus, ifM is bounded on inputw, M ′ ∈ A2. Conversely, ifM is unbounded
on inputw, M ′ will eventually overwrite any input string, andM ′ 6∈ A2. This shows thatM ′ ∈ A2

is bounded iffM is bounded. I’ve reduceAbounded to A2, and transitively have reducedATM to A2.
This shows thatA2 is undecidable. overwrite every symbol of any input string.In this case,

7. (15 points) Let

A42 = {[M] | [M] describes a TM that accepts at least 42 strings.}

(a) (8 points) Prove thatA42 is not Turing-decidable.

Solution:

(b) (7 points) Prove thatA42 is Turing-recognizable.

Solution:

8. (20 points) A one-counter automaton (OCA) is a 6-tuple(Q, Σ, δ, q0, qf , qr). The symbols⊢ and⊣ are left and
right endmarkers; if the input string isw, the OCA’s tape will be⊢ w ⊣.

As the name suggests, the OCA has a counter that can hold any integer. The OCA starts in stateq0 with the
counter set to zero and the read-head at the leftmost tape square (the one with the⊢). At each step, the OCA
makes a move depending on its current state, the tape symbol currently under the read head, and whether or
not the value of the counter is equal to zero. Based on this information, the OCA transitions to a new state;
moves its tape head one square to the left or the right; and thecounter is either incremented, decremented or left
unchanged. If the OCA ever reaches stateqa it accepts, and if it reachesqr it immediately rejects.

(a) (5 points) Describe an OCA that recognizes the language:

B1 = {x | ∃w ∈ {a,b}∗. x = w#wR}

You don’t need to into lots of detail. My solution has nine sentences.

Solution: The OCA reads the first symbol of the string before the#. square to the right of the# symbol.
If it reaches the right end-marker without seeing a#, it rejects. Otherwise, it performs the following
loop:

Store the current symbol using the finite state. Move the headto the left until the# is reached,
and increment the counter with each move. Now, decrement thecounter to find the corre-
sponding symbol in the string before the#. If the symbol from the right side was⊣ and the
current symbol is⊢ accept. Otherwise, if the symbols differ, reject. Otherwise, move one
square to the left, store that symbol in the current state using the counter as before to find the
corresponding position in the right substring, check that symbol, and continue.

(b) (5 points) Describe an OCA that recognizes the language:

B2 = {x | ∃w ∈ {a,b}∗. x = w#wR#w}

You don’t need to into lots of detail. My solution two sentences.

Solution: Use the same idea as above to check the firstw#wR part. Then, the OCA moves over past the
first # and checks thewRw part.

(c) (10 points) Prove that the language emptiness problem for OCAs is Turing-undecidable.

Once again, you don’t need lots of detail. Just describe the key points of the reduction so that it’s clear that
you know how to solve the problem. My solution has seven sentences (using computational histories) or
nine (using PCP).

Solution 1: Computational histories approach
Let M be a TM andw be an input string.M acceptsw iff there exists a computational history,

#config0#configR

1 # · · ·#configm#

that showsM acceptingw (whereconfigm is reversed ifm is odd that). We can make the strings for
each of theconfig i’s the same length by appending spaces to the shorter ones to make them all as long
as the longest.
The solution towwRw above can be generalized to create a OCA that recognizeswwRwwR . . . w.
Likewise, the OCA can check that each successive configuration is the correct successor to the previ-
ous one – this is just a slight variation of checking that the strings are each other’s reverse; the OCA
has to take special care of the part of the configuration that encodes the head position and state. Fi-
nally, the OCA can use its finite state to verify that the first configuration is the correct one and that
the last configuration is accepting.

Solution 2: PCP approach
Here’s a reduction from PCP. Let(a1, b1), (a2, b2), . . . (ak, bk) be an instance of PCP. If there is a
solution, it can be written as:

ai1,ai2, · · ·,aim
#bRim

, · · · bRi2,bRi1

where, and# are symbols that are not in the alphabet for theai’s andbi’s. A OCA can verify that
ai1ai2 · · · aim

= (bRim
· · · bRi2b

R

i1
)R by essentially the same way that it can verify that a string isof the

form wwR; it just ignores the commas. The OCA can then perform a secondphase where it again
does aw#wR check, but this time it reads anaij

string and determines the set of PCP pairs that it
could come from. There are2k possible sets, so the OCA can remember this in its finite. It then
checks that the correspondingbij

string is a valid partner for theaij
string. And so on.

A string will pass both tests iff it is a solution to the PCP problem. Thus, this OCA recognizes a
non-empty language iff the PCP problem is solvable.

9. (20 points) Let A be a regular language with|A| = ∞. Prove that there exists a languageB with B ⊆ A such
thatB is not Turing-recognizable.

Solution:

