CpSc 421 Final Exam December 15, 2006

Do problem zero andx of problems 1 through 9. If you write down solutions for mdnattsix problems, clearly
indicate those that you want graded. Note that problems eamdsth 12, 15 or 20 points: you can attempt between
84 and 108 points depending on the problems that you chotig eXam will be graded on a scale of 100 points.

0. (3 points) If you have read and understood the instructions in theipusvyparagraph, write

| have read the instructions and understand that | am supposed to solve six of the nine problems; that
| can thereby attempt between 84 and 108 total points; and that the examis graded on a scale of 100.

as your answer to this problem.

Solution: | have read the instructions and understand that | am supposed to solve six of the nine
problems; that | can thereby attempt between 84 and 108 total points; and that the exam is
graded on a scale of 100.

1. (12 points) Let #a(w) be the number o&’s in w and#b(w) be the number ob’s in w. Draw the transition
diagram for an NFA that recognizes the languagedefined below:

A1 = {we{a,b}|3r,y, 2 (w=1zyz) A (F#aly) > #b(y) +3)}

In other words, thed; contains those strings that contain some substring (dgghib entire string itself) that
has three mora’s thanb’s.

Solution:
a, b
a a a
RS SRS
ONRONROSLY
b b

It's also possible to turn this into a DFA, just add an arc fretate 1 back to state O labeled™; and
change the label on the self-arc for state 0 from “a,b” to “Bécause every DFA is an NFA, this is also
an acceptable answer.

2. (20 paints) Let X be a finite alphabet. Far, y € ¥* with |z| = |y|, define thedistance between: andy as the
number of symbols for whickr andy differ. For those who like formulas:

dist(e,e) = 0
dist(x - c,y-c) = dist(x,y), T,y EX*; ceX
dist(x - c,y-d) = dist(z,y)+1, xz,ye€X*; c,deX; c#£d

Let A be a language. Define

threeStrikes(A)
notBad(A)

{z |3y e Ayl = [x]) A (dist(z,y) < 3)}
{z 3y € A (Jyl = |=[) A (dist(z, y) <x]/3)}

(a) (10 points) Show that ifA is a regular language, thehreeStrikes(A) is also regular.
Hint: My solution has five sentences.



Solution: LetD = (Q, X, 6, qo, F') be a DFA that recognizes$. DefineNs, = (Qx{0, 1,2}, X, dss, (g0, 0), F'X
{0,2,2}) where

d35((q, ), ¢) {(6(q,¢),m)} U {(¢',n+1)|3 €eX.q¢ =06(¢q,c)}, n<2
635((q13)70) = {(6((]70)13)}
N3, uses the second component of its state to count the numbésfatth symbols, and it uses its
non-determinism to “guess” where and what these mismatuohels are L(Ns,) = threeStrikes(A),
andL(Ns;) is regular. ThusthreeStrikes(A) is regular as required.
(b) (2 points) Show a languagéd; such thatd, andnotBad(A;) are both regular.
Solution: Let A; = ¥*. Clearly,notBad(A;) = ¥* which is regular.
Note that), any finite language, and many other languages would workedls kor those who don’t
think it's obvious thatnotBad(3*) = £*, here’s the proof. Ley be any string in*. Note that
dist(y,y) = 0 < |y|/3. Thusy € notBad(X*) as claimed.
(c) (2 points) Show another languagé, such thatA, is regular andvotBad(A2) is not regular.
Solution: LetY = {a, b} andA; = a*.
(d) (6 points) Prove that for your choice ols, notBad(A2) is not regular.
Solution:
Letp > 0 be a proposed pumping lemma constantfotBad(As).
Letw = bPa?!. w € notBad(As) because’? € A, anddist(w, a’?) = p = |w|/3.
Letz, y, andz be any strings such that = zyz, |xy| < p and|y| > 1.
Clearly,y = b*, for somek > 0. Thus,zy?z = bPT*a2P. The only string in4, that is comparable to
bPHEa?P is a®PtE anddist (bPT*a?P, a®PtF) = p+k > (3p+k)/3. Thus,xy?z & notBad(As).
notBad A5 does not satisfy the conditions of the pumping lemma for leeganguages. Therefore,
it is not regular.

3. (12 points) Let

B; = {z|3we{ab}". x=wHwR}
By = {z|3we {a,b}*. z = wHwR#w}
(a) (6 points) Give a CFG forB;.

Solution:
So — aSa|bSb|#
(b) (6 points) Prove thatBs is not a CFL.
Solution:

Letp > 0 be a proposed pumping lemma constantBgr

Lets = aP#aP#a”. Clearly,s € By — no justification of this claim is needed, but for those whe ar
in doubt, letw = a?. w € {a,b}*; w® = w; ands = wH#HwWR#w.

Letu, v, z, y, andz be any strings withwzyz = s, [vy| > 0, andjvzy| < p.

Becausdvzy| < p, it overlaps at most two of the or w™® substrings ok. Thus,uv?zy?z changes
the number of’s in one or two of these substrings but not in all three (orejoihis shows that
wolzy’z € Bo.

B, does not satisfy the conditions of the pumping lemma for CHIterefore, it is not context-free.

4. (15 points) As in question 3, let
By = {z|3w e {a,b}*. x = w#wR#w}

Show thatB; is a CFL.
Hint: Consider the proof that®b"¢™ is a CFL (e.g, HW 6, Q1l.e).



Solution: Note that

By, = {w]| Az,y,x € {a,b}*. w=a#y#z}
U {w]|3z,y,2 € {a,b}*. (w=a#y#z) A (z #y™)}
U {w| 3z, y,2z € {a,b}*. (w=a#ty#z) A (y* # 2)}

Now note that

{w]| Az,y,x € {a,b}*. w = a#y#z} is regular, and therefore a CFL.

{w| Iz, y, 2 € {a,b}*. (w=z#y#z) A (xz # y™)} is recognized by a PDA that does the following:
0. Pushes an end-of-stack mark&anto the stack.
1. Pushes eachor b that it sees onto the stack until it encounters the firsthis is thex string.

2. Pops ther string off the stack while reading thestring. The PDA uses its finite state to record if
it finds a pair of symbols that don’t match onif| # |y|.
3. After the second, the PDA verifies that the rest of the string is{im b} *.
4. The PDA accepts if it saw that=~ y in step 2 and the string has tw#s.
Thus,{w | 32,9, 2 € {a,b}*. (w = a#y#z) A (v # y~)} is a CFL.
{w | Jz,y,2 € {a,b}*. (w = z#y#z) A (y®) # 2} is a CFL by an argument similar to the one for the
previous case.

Thus, B, is the union of three CFLs. The CFLs are closed under uni@nefbre,B; is a CFL.
5. (12 points) Draw the transition diagram for a Turing machine that esatsetape and then continues from state

q1 with the tape head at the left end of the tape. My solution heeetstatesy, (the initial state)y; (the state
the TM enters after erasing its tape and moving back to thested); andg, (one more state to get the work

done).
2R >>=.,L
() =L @ =L
e /\@

Note that the space symbol is notih I'm taking advantage of Sipser’s defintion for TM operatibat says
that if the head is at the leftmost square and the transitiga tb move the head to the left, the head just stays at
the leftmost square (but performs the specified write arte stansition).

Solution:

6. (15 points) Let

Ay = {[M] ]| There is some non-empty string such thaf )| reads every symbol af when run
with inputw. }
As; = {[M]| There is some non-empty string such thafM/] does not read every symbol of

when run with inputw. }

(@) (3points)Is A; = A,? Give a short justification for your answer.

Solution: No. A machine could read every symbol of some strings but thot a
The statements above are a sufficient answer. Here's a mtadedeexplanation for those who are
still in doubt. For example, let/ be a machine that recogniz@sU b)*b(a U b)* (i.e. any string in
{a,b}* with at least ond. Let M scan its tape to the right until it encounterb at which point it
accepts. If it encounterda, then it rejects. Note that/ reads every symbol in the strirag but only
the first symbol obb. Thus,M € A, andM € A,. This shows thatl; # As.

(b) (6 points) Is A; decidable? Justify your answer.



Solution: A; is decidable. Letv be any string consisting of exactly one symbol from the irgdphabet
of M. M must make at least one move when run with inp{ibecause the start, accept, and reject
states are distinct by the definition of a TM). Thdg,reads every symbol af when run with input
w. In other wordsA; holds for any TM. All a decider has to do is check to make suagith input is
a valid TM description.

(c) (6 points) Is A, decidable? Justify your answer.

Solution: As is not decidable. I'll reducelr;; to As. I'll do this by reducingA;,, t0 Apoundeq- and
reducingAy,yundeq 10 A2 Where

Apoundeda = {[M]#w | TM M uses a bounded amount of space when run with inpyt

First, I'll reduce A1y t0 Apounded. L€t M 4, e a TM that does the following when run with input
[M]#w:
if((M]#w € Apounded) I* reduction toApounded */
accept; /* M uses unbounded tape on input. . */
[* . it must be looping/
else {
SimulateM running with inputw, recording each configuration encountered.
if(M acceptsreject;
else if(M reject$ accept;
else if(M repeats a configuratipi* M is looping*/
accept;
}

Now, I'll reduce Appunded t0 As. Let[M] be a TM description and be an input string tav. Construct
the TM description forl/’ that does the following when run on inptrt

1. Writew on its input tape followed byl’. M’ then moves its head back to the leftmost tape square.
[’ is a symbol that is not in the tape alphabef\éf the orginal TM. Note thad/’ does not erase
its input first; thus there will be some suffix ofleft unread on the tape if| > |w| + 1.

2. M’ now runsM except that if it ever encounters a square with’alM’ does the following:
2.a Letq be the statd/’ is in when it encounters tHg’ symbol.

2.b M’ writes a[J on the tape; moves one square to the right; and enters¢gt@alifferentq’
for eachg). Note that there is always at most doésymbol on the tape.

2.c M’ writes all’ on the tape; moves one square to the left and returns togstate
2.d M’ continues ag/.

Clearly, all of these operations are Turing computable.

Consider the case whend is bounded on input. Letn be the number of tape squarkgstouches
when run with inputw. Then, if M’ is run with any string of with length greater than A’ will not
read its entire input. Thus, i#/ is bounded on inpuw, M’ € A,. Conversely, ifM is unbounded
on inputw, M’ will eventually overwrite any input string, and’ ¢ A,. This shows thafl/’ € A,
is bounded iffM is bounded. I've reducd ;,.4.q t0 A2, and transitively have reducetly), to As.
This shows thatd, is undecidable. overwrite every symbol of any input strilmgthis case,

7. (15 points) Let
Agpp = {[M]]|[M] describes a TM that accepts at least 42 strijgs.

(a) (8 points) Prove thatd,s is not Turing-decidable.
Solution:

(b) (7 points) Prove thatd,, is Turing-recognizable.
Solution:



8. (20 points) A one-counter automaton (OCA) is a 6-tup@, X, 6, go, g7, ¢-). The symbols- and- are left and
right endmarkers; if the input string is, the OCA's tape will bé- w .

As the name suggests, the OCA has a counter that can hold &gein The OCA starts in statg with the
counter set to zero and the read-head at the leftmost tapees(the one with the). At each step, the OCA
makes a move depending on its current state, the tape symirehtly under the read head, and whether or
not the value of the counter is equal to zero. Based on thigrmdtion, the OCA transitions to a new state;
moves its tape head one square to the left or the right; ancbilneter is either incremented, decremented or left
unchanged. If the OCA ever reaches stgté accepts, and if it reaches it immediately rejects.

(@) (6 points) Describe an OCA that recognizes the language:
By = {z|3we{a,b}*. z=wHwR}

You don't need to into lots of detail. My solution has nine tegtes.

Solution: The OCA reads the first symbol of the string before#haquare to the right of thi symbol.

If it reaches the right end-marker without seeing,at rejects. Otherwise, it performs the following

loop:
Store the current symbol using the finite state. Move the beetitk left until thet is reached,
and increment the counter with each move. Now, decrementdhater to find the corre-
sponding symbol in the string before the If the symbol from the right side was$and the
current symbol is- accept. Otherwise, if the symbols differ, reject. Otheewisiove one
square to the left, store that symbol in the current stateguisie counter as before to find the
corresponding position in the right substring, check thatisol, and continue.

(b) (5 points) Describe an OCA that recognizes the language:
By = {z|3w e {a,b}*. x = wHtwR#w}

You don't need to into lots of detail. My solution two senteac

Solution: Use the same idea as above to check therfitst™ part. Then, the OCA moves over past the
first# and checks the/™w part.

(c) (10 points) Prove that the language emptiness problem for OCAs is Gruwimdecidable.
Once again, you don't need lots of detail. Just describedlygokints of the reduction so that it's clear that
you know how to solve the problem. My solution has seven seete (using computational histories) or
nine (using PCP).

Solution 1. Computational histories approach
Let M be a TM andw be an input stringM acceptav iff there exists a computational history,

#config,# conﬁg?# ---#config,, #

that shows\ acceptingw (whereconfig,,, is reversed ifn is odd that). We can make the strings for
each of theconfig,’s the same length by appending spaces to the shorter onekethem all as long
as the longest.

The solution toww™w above can be generalized to create a OCA that recognizésww™ ... w.
Likewise, the OCA can check that each successive configurigithe correct successor to the previ-
ous one — this is just a slight variation of checking that thimgs are each other’s reverse; the OCA
has to take special care of the part of the configuration thed@es the head position and state. Fi-
nally, the OCA can use its finite state to verify that the fitfiguration is the correct one and that
the last configuration is accepting.



Solution 2: PCP approach

Here’s a reduction from PCP. Lét1,b1), (a2, b2), ... (ak, bx) be an instance of PCP. If there is a
solution, it can be written as:

R R 1R
Ajyy Qjyy "'laim#biml .'.bizl bil

where, and# are symbols that are not in the alphabet fordh'e andb;’s. A OCA can verify that

@iy iy - -+ az,, = (BF - - bEOR)R by essentially the same way that it can verify that a stringf the
form ww™; it just ignores the commas. The OCA can then perform a sepbade where it again
does aw#w™ check, but this time it reads an, string and determines the set of PCP pairs that it
could come from. There ar2® possible sets, so the OCA can remember this in its finite. e th
checks that the correspondibg string is a valid partner for the;; string. And so on.

A string will pass both tests iff it is a solution to the PCP Ipimm. Thus, this OCA recognizes a
non-empty language iff the PCP problem is solvable.

9. (20 paints) Let A be a regular language witill| = oo. Prove that there exists a languaBevith B C A such
that B is not Turing-recognizable.

Solution:



