Proofs

Mark Greenstreet, CpSc 421, Term 1, 2006/07

- Proposistional Logic
- Number Theory
- Proofs are decidable.
- Theorems are not.

Proof Rules for Proposistions

	Rule	Name
0.	$\therefore \frac{\text { Given }^{\prime}}{p}$	Hypothesis
1.	$\therefore \frac{p}{p \vee q}$	Disjunctive Addition
2.	$\therefore \frac{p \vee q}{q \vee v}$	Commutativity of Disjunction
3.	$\therefore \frac{p \vee q, \quad \neg p}{q}$	Disjunctive Simplification
4.	$\therefore \frac{p \wedge q}{p}$	Conjunctive Simplification
5.	$\therefore \frac{p \wedge q}{q \wedge p}$	Commutativity of Conjunction

More Proof Rules

	Rule	Name
6.	$\therefore \frac{p, \quad q}{p}$	Conjunction
7.	$\therefore \frac{p, \quad p \Rightarrow q}{q}$	Modus Ponens
8.	$\therefore \frac{\neg q, \quad p \Rightarrow q}{\neg p}$	Modus Tollens
9.	$\begin{aligned} & p \Rightarrow q, \quad q \Rightarrow r \\ & p \Rightarrow r \end{aligned}$	Transitivity of Implication
10.	$\therefore \quad \frac{p \vee q i g a p \not p \vee r}{} \quad q \vee r$	Resolution

A Simple Proof

Given: $\neg p \wedge q, r \Rightarrow p, \neg r \Rightarrow s, s \Rightarrow t$.
Prove: t.

Step		Justification	Stringification
1.	$\neg p \wedge q$	Hypothesis 1	$\# \neg p \wedge q, 0,1$
2.	$\neg p$	Conjunctive Simplification	$\# \neg p, 4,1$
3.	$r \Rightarrow p$	Hypothesis 2	$\# r \Rightarrow p, 0,2$
4.	$\neg r$	Modus tollens, steps 2 \& 3	$\# \neg r, 8,2,3$
5.	$\neg r \Rightarrow s$	Hypothesis 3	$\# \neg r \Rightarrow s, 0,3$
6.	s	Modus ponens, steps 4 \& 5	$\# s, 7,4,5$
7.	$s \Rightarrow t$	Hypothesis 4	$\# s \Rightarrow t, 0,4$
8.	t	Modus ponens, steps 6 \& 7	$\# t, 7,6,7$

A Grammar for Proofs

Let $\Sigma=\{0,1, \mathrm{v}, \#,,, \wedge, \vee, \neg, \Rightarrow,()$,$\} .$
The grammar:

$$
\begin{aligned}
\text { Proof } & \rightarrow \text { Hypotheses \# ProofSteps \# Conclusion } \\
\text { Hypotheses } & \rightarrow \text { є| HypothesisList } \\
\text { HypothesisList } & \rightarrow \text { Hypothesis } \mid \text { HypothesisList, Hypothesis } \\
\text { Hypothesis } & \rightarrow \text { Proposition } \\
\text { Proposition } & \rightarrow \text { Prop1 } \mid \text { Prop } 1 \Rightarrow \text { Proposition } \\
\text { Prop1 } & \rightarrow \text { Prop2 } \mid \text { Prop1 } \vee \text { Prop2 } \\
\text { Prop2 } & \rightarrow \text { Prop3 } \mid \text { Prop2 } \wedge \text { Prop3 } \\
\text { Prop3 } & \rightarrow \text { Prop4 } \mid \neg \text { Prop3 } \\
\text { Prop4 } & \rightarrow \text { Variable } \mid \text { Proposition) } \\
\text { Variable } & \rightarrow \text { Number } \\
\text { Number } & \rightarrow \text { Digit } \mid \text { Number Digit } \\
\text { Digit } & \rightarrow 0 \mid 1
\end{aligned}
$$

Proof Grammar (cont)

The rest of the grammar

| ProofSteps | \rightarrow ProofStep \|ProofSteps | \#ProofStep |
| ---: | :--- |
| ProofStep | \rightarrow Proposition, ProofRule RuleArgs |
| ProofRule | \rightarrow Number |
| RuleArgs | $\rightarrow \epsilon \mid$, Number RuleArgs |
| Conclusion | \rightarrow Proposition |

- Example, the proof from slide 4. Let $p \rightarrow \mathrm{v} 000, q \rightarrow \mathrm{v} 001, r \rightarrow \mathrm{v} 010, s \rightarrow \mathrm{v} 011$, $t \rightarrow \mathrm{v} 100$. The string corresponding to the proof from slide 4 is:

$$
\begin{aligned}
& \neg \mathrm{v} 000 \wedge \mathrm{v} 001, \mathrm{v} 010 \Rightarrow \mathrm{v} 000, \neg \mathrm{v} 010 \Rightarrow \mathrm{v} 011, \mathrm{v} 011 \Rightarrow \mathrm{v} 100 \\
& \# \neg \mathrm{v} 000 \wedge \mathrm{v} 001,0,1 \# \neg \mathrm{v} 000,4,1 \# \mathrm{v} 010 \Rightarrow \mathrm{v} 000,0,2 \# \neg \mathrm{v} 010,8,2,3 \\
& \# \neg \mathrm{v} 010 \Rightarrow \mathrm{v} 011,0,3 \# \mathrm{v} 011,7,4,5 \# \mathrm{v} 011 \Rightarrow \mathrm{v} 100,0,4 \# \mathrm{v} 100,7,6,7 \\
& \# \mathrm{v} 100
\end{aligned}
$$

A Language for Proofs

Let $P=\{w \mid w$ in a valid proof $\}$.
P is Turing-decidable.
Proof: construct a Turing machine, M_{P} that on input w :

1. M_{P} first makes sure that w is generated by the grammar given on slides 5 and 6.
2. For each ProofStep, Proposition, ProofRule RuleArgs, in w :
A. M_{P} makes sure that each argument to the rule refers to a hypothesis or a previous proof-step.
B. M_{P} applies the proof rule with the given arguments and makes sure that the result matches the proposition give from the proof step.
3. M_{P} makes sure that the Conclusion matches the Proposition of the final ProofStep.

A Language for Theorems

- Let
$T=\{$ Hypotheses $\#$ Conclusion $\mid \exists u$. Hypotheses $\# u \#$ Conclusion $\in P\}$.
- T is Turing-Decidable.
- Each propositional variable can be either true or false.
- Just try all combinations and make sure that the claim holds
- This was easy because our language was so simple.
- We can add universal and existential quantifiers, and the resulting theory is still decidable. Again, for any given formula, there are only a finite number of combinations that the decider Turing machine needs to check.

Another Decidable Theory

- Add variables that are quantified over the natural numbers,,$+<,=$, and $>$.
- We can define rules for proofs and a new language of proofs, $P_{\mathbb{N},+}$ and a new language of theorems, $T_{\mathbb{N},+}$.
- $P_{\mathbb{N},+}$ is decidable. There are a few more proof rules, but the basic approach remains the same.
- $T_{\mathbb{N},+}$ is decidable.
- We can show this by building a clever DFA for addition (remember the DFAs that check binary addition?).
- We use an NFA to verify existentially quantified variables.
- We use language complement and an NFA to verify universally quantified variables.
- The details are in Sipser (see theorem 6.12).

Natural Numbers with + and *

- Add \star.
- Note that we can get subtraction, division, and mod using quantifiers:
- $\exists q$. $(q * x \leq y) \wedge((q+1) * x>y) \wedge \varphi$ sets q to $\operatorname{div}(y, x)=\lfloor y / x\rfloor$ in formula φ.
- $\exists r .(y=x * \operatorname{div}(y, x)+r) \wedge \varphi$ sets r to $\bmod (y, x)$ in formula φ.
- $\exists d .(y=x+d) \wedge \varphi$ sets d to $y-x$ in formula φ.
- We can define rules for proofs and a new language of proofs, $P_{\mathbb{N},+, *}$ and a new language of theorems, $T_{\mathbb{N},+, *}$.
- $P_{\mathbb{N},+, *}$ is decidable. There are a few more proof rules, but the basic approach remains the same.
- $T_{\mathbb{N},+, *}$ is NOT decidable.

Simulating a Stack with $\mathbb{N},+$, and

- Let $K=|\Gamma|+1$ where Γ is the stack alphabet.
- $S^{\prime} \leftarrow \operatorname{push}(S, c)$ becomes $\exists S^{\prime}$. $\left(S^{\prime}=K * S+c\right)$.
- $\left(S^{\prime}, c\right) \leftarrow \operatorname{pop}(S)$ becomes $\left(S^{\prime}=\operatorname{div}(S, K)\right) \wedge(c=\bmod (S, K))$.
- Examples:

Let $\Gamma=\{1,2,3,4,5,6,7,8,9\}$.

- Let

$$
\begin{array}{rlrl}
S_{0} & =0, & & \text { an empty initial stack } \\
S_{1} & =\operatorname{push}\left(S_{0}, 3\right) & = & 3 \tag{3}\\
S_{2} & =\operatorname{push}\left(S_{1}, 8\right) & = & 38 \\
S_{3} & =\operatorname{push}\left(S_{2}, 4\right) & = & 382 \\
\left(S_{4}, c\right) & =\operatorname{pop}\left(S_{3}\right) & =(38,2)
\end{array}
$$

- Note that we can represent strings with integers and manipulate them using $*$, div, and mod in the same way as we represented a stack.

An Undecidable Formula

- Given M, the integer corresponding to the string that describes some Turing machine, and w, the integer corresponding to a string that is the input for that Turing machine, we'll write define function $H_{M}(w, n)$ which returns 1 if M halts after at most n moves, and 0 otherwise.
- We do this by simulating M using a 2PDA
- We implement the stacks for the PDAs using integers as described above.
- We simluate M with a recursive function that returns 1 if it is in state $q_{\text {accept }}$ or $q_{\text {reject }}$ and returns the result of a recursive call with arguments corresponding to the next state of M otherwise.
- M halts on input w iff $\exists n$. $H_{M}(w, n)=1$. Thus, to decide if M halts on input w, ask if $\exists n$. $H_{M}(w, n)=1$ is a theorem.

The Details

Defining the H_{M} and F_{M} functions:

```
\(F_{M}(\) left, right, \(q, n)=\)
    if \(\left(\left(q=q_{\text {accept }}\right) \vee\left(q=q_{\text {reject }}\right)\right)\) then 1
    else if \((n==0)\) then 0
    else let \(c=\bmod (r i g h t, K)\) in
        let \(\left(q^{\prime}, c^{\prime}, \operatorname{dir}\right)=\delta_{M}(q, c)\) in
            \(\operatorname{if}(\operatorname{dir}=L) F_{M}\left(\operatorname{div}(l e f t, K), K *\left(\right.\right.\) right \(\left.\left.-c+c^{\prime}\right)+\bmod (l e f t, K), q^{\prime}, n-1\right)\)
            else \(F_{M}\left(K *\right.\) left \(+c^{\prime}, \operatorname{div}(\) right,\(\left.K), q^{\prime}, n-1\right)\)
    \(H_{M}(w, n)=F_{M}\left(0, w, q_{0}, n\right)\)
```

Note: I'm assuming that the blank symbol is encoded with 0 . This allows there to be an infinite number of blanks to the right of w. This simulation corresponds to a machine with a two-way infinite tape - that was easier.

A Final Remark

- $T_{\mathbb{N},+, *}$ is Turing-recognizable.
- Proof (sketch):
- A TM can enumerate all strings in lexigraphical order and check each one to see if it is a proof for the proposed theorem.
- If the proposed theorem is a theorem, then it has a proof, and there is some shortest proof. When the TM encounters this proof, it accepts.
- If the proposed theorem is not a theorem, then it has a no proof, and this TM will loop.
- $\therefore T_{\mathbb{N},+, *}$ is Turing-recognizable as claimed.

Reading List:

Today: Sipser, 6.1
Nov. 24: Sipser, 6.2
Nov. 27: Everything else about complexity theory.
Nov. 29: The GHz race is over, and what it means for you.
Dec. 1: Surprise (?)

