

Mark Greenstreet, CpSc 421, Term 1, 2006/07

- Proposistional Logic
- Number Theory
 - Proofs are decidable.
 - Theorems are not.

Proof Rules for Proposistions

	Rule	Name
0.	$\begin{array}{c} \text{Given } p \\ \therefore p \end{array}$	Hypothesis
1.	$ \begin{array}{c} p \\ \therefore p \lor q \end{array} $	Disjunctive Addition
2.	$ \begin{array}{c} p \lor q \\ \therefore q \lor v \end{array} $	Commutativity of Disjunction
3.	$p \lor q, \neg p$ $\therefore q$	Disjunctive Simplification
4.	$p \wedge q$ $\therefore p$	Conjunctive Simplification
5.	$egin{array}{ccc} p \wedge q \ dots & q \wedge p \end{array}$	Commutativity of Conjunction

More Proof Rules

	Rule	Name
6.	p, q $\therefore p$	Conjunction
7.	$\begin{array}{cc} p, & p \Rightarrow q \\ \therefore & q \end{array}$	Modus Ponens
8.	$ \begin{array}{c} \neg q, p \Rightarrow q \\ \therefore \neg p \end{array} $	Modus Tollens
9.	$p \Rightarrow q, q \Rightarrow r$ $\therefore p \Rightarrow r$	Transitivity of Implication
10.	$ \begin{array}{c} p \lor qigap \not p \lor r \\ \therefore q \lor r \end{array} $	Resolution

A Simple Proof

Given: $\neg p \land q, r \Rightarrow p, \neg r \Rightarrow s, s \Rightarrow t.$

Prove: t.

Step		Justification	Stringification
1.	$ eg p \wedge q$	Hypothesis 1	$\# \neg p \land q, 0, 1$
2.	eg p	Conjunctive Simplification	$\#\neg p, 4, 1$
3.	$r \Rightarrow p$	Hypothesis 2	$\#r \Rightarrow p, 0, 2$
4.	$\neg r$	Modus tollens, steps 2 & 3	$\# \neg r, 8, 2, 3$
5.	$\neg r \Rightarrow s$	Hypothesis 3	$\# \neg r \Rightarrow s, 0, 3$
6.	s	Modus ponens, steps 4 & 5	#s, 7, 4, 5
7.	$s \Rightarrow t$	Hypothesis 4	$\#s \Rightarrow t, 0, 4$
8.	t	Modus ponens, steps 6 & 7	#t, 7, 6, 7

CpSc 421 — 22 November 2006 – p.4/14

A Grammar for Proofs

• Let $\Sigma = \{0, 1, v, \#, , , \land, \lor, \neg, \Rightarrow, (,)\}.$

The grammar:

Proof	\rightarrow	$Hypotheses \mbox{ \# ProofSteps \mbox{ \# Conclusion}}$
Hypotheses	\rightarrow	$\epsilon \mid HypothesisList$
HypothesisList	\rightarrow	$Hypothesis \mid HypothesisList$, $Hypothesis$
Hypothesis	\rightarrow	Proposition
Proposition	\rightarrow	$Prop1 \mid Prop1 \Rightarrow Proposition$
Prop1	\rightarrow	$Prop2 \mid Prop1 \lor Prop2$
Prop2	\rightarrow	$Prop3 \mid Prop2 \land Prop3$
Prop3	\rightarrow	$Prop4 \mid \neg Prop3$
Prop4	\rightarrow	Variable (Proposition)
Variable	\rightarrow	\mathbf{v} Number
Number	\rightarrow	Digit Number Digit
Digit	\rightarrow	0 1

Proof Grammar (cont)

The rest of the grammar

ProofSteps	\rightarrow	$ProofStep \mid ProofSteps \mid \#ProofStep$
ProofStep	\rightarrow	Proposition, $ProofRule$ $RuleArgs$
ProofRule	\rightarrow	Number
RuleArgs	\rightarrow	$\epsilon \mid$, Number RuleArgs
Conclusion	\rightarrow	Proposition

• Example, the proof from slide 4. Let $p \rightarrow v000$, $q \rightarrow v001$, $r \rightarrow v010$, $s \rightarrow v011$, $t \rightarrow v100$. The string corresponding to the proof from slide 4 is: $\neg v000 \land v001$, $v010 \Rightarrow v000$, $\neg v010 \Rightarrow v011$, $v011 \Rightarrow v100$ $\# \neg v000 \land v001$, 0, $1\# \neg v000$, 4, $1\# v010 \Rightarrow v000$, 0, $2\# \neg v010$, 8, 2, 3 $\# \neg v010 \Rightarrow v011$, 0, 3# v011, 7, 4, $5\# v011 \Rightarrow v100$, 0, 4# v100, 7, 6, 7# v100

A Language for Proofs

- Let $P = \{w \mid w \text{ in a valid proof}\}.$
- *P* is Turing-decidable.
 - Proof: construct a Turing machine, M_P that on input w:
 - 1. M_P first makes sure that w is generated by the grammar given on slides 5 and 6.
 - **2.** For each ProofStep, Proposition, ProofRule RuleArgs, in w:
 - A. M_P makes sure that each argument to the rule refers to a hypothesis or a previous proof-step.
 - B. M_P applies the proof rule with the given arguments and makes sure that the result matches the proposition give from the proof step.
 - 3. M_P makes sure that the *Conclusion* matches the *Proposition* of the final *ProofStep*.

A Language for Theorems

- Let
 - $T = \{ Hypotheses \# Conclusion \mid \exists u. Hypotheses \# u \# Conclusion \in P \}.$
- T is Turing-Decidable.
 - Each propositional variable can be either true or false.
 - Just try all combinations and make sure that the claim holds
- This was easy because our language was so simple.
- We can add universal and existential quantifiers, and the resulting theory is still decidable. Again, for any given formula, there are only a finite number of combinations that the decider Turing machine needs to check.

Another Decidable Theory

- Add variables that are quantified over the natural numbers, +, <, =, and >.
- We can define rules for proofs and a new language of proofs, $P_{\mathbb{N},+}$ and a new language of theorems, $T_{\mathbb{N},+}$.
- $P_{\mathbb{N},+}$ is decidable. There are a few more proof rules, but the basic approach remains the same.
- $T_{\mathbb{N},+}$ is decidable.
 - We can show this by building a clever DFA for addition (remember the DFAs that check binary addition?).
 - We use an NFA to verify existentially quantified variables.
 - We use language complement and an NFA to verify universally quantified variables.
 - The details are in Sipser (see theorem 6.12).

Natural Numbers with + and *

Add *.

- Note that we can get subtraction, division, and mod using quantifiers:
 - $\exists q. \ (q * x \leq y) \land ((q+1) * x > y) \land \varphi \text{ sets } q \text{ to } \operatorname{div}(y,x) = \lfloor y/x \rfloor \text{ in formula } \varphi.$
 - $\exists r. (y = x * \operatorname{div}(y, x) + r) \land \varphi$ sets r to $\operatorname{mod}(y, x)$ in formula φ .
 - $\exists d. (y = x + d) \land \varphi$ sets d to y x in formula φ .
- We can define rules for proofs and a new language of proofs, $P_{\mathbb{N},+,*}$ and a new language of theorems, $T_{\mathbb{N},+,*}$.
- $P_{\mathbb{N},+,*}$ is decidable. There are a few more proof rules, but the basic approach remains the same.
- $T_{\mathbb{N},+,*}$ is NOT decidable.

Simulating a Stack with \mathbb{N} , +, and –

- Let $K = |\Gamma| + 1$ where Γ is the stack alphabet.
- $S' \leftarrow \operatorname{push}(S, c)$ becomes $\exists S'. (S' = K * S + c)$.
- $\bullet \ (S',c) \gets \mathsf{pop}(S) \text{ becomes } (S' = \mathsf{div}(S,K)) \land (c = \mathsf{mod}(S,K)).$

• Examples:

• Let $\Gamma = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Let

- $S_0 = 0,$ an empty initial stack $S_1 = push(S_0, 3) = 3$ $S_2 = push(S_1, 8) = 38$ $S_3 = push(S_2, 4) = 382$ $(S_4, c) = pop(S_3) = (38, 2)$
- Note that we can represent strings with integers and manipulate them using *, div, and mod in the same way as we represented a stack.
 CpSc 421 — 22 November 2006 – p.11/14

An Undecidable Formula

- Given *M*, the integer corresponding to the string that describes some Turing machine, and *w*, the integer corresponding to a string that is the input for that Turing machine, we'll write define function *H_M(w, n)* which returns 1 if *M* halts after at most *n* moves, and 0 otherwise.
- We do this by simulating M using a 2PDA
 - We implement the stacks for the PDAs using integers as described above.
 - We simluate M with a recursive function that returns 1 if it is in state q_{accept} or q_{reject} and returns the result of a recursive call with arguments corresponding to the next state of M otherwise.
- *M* halts on input *w* iff $\exists n. H_M(w, n) = 1$. Thus, to decide if *M* halts on input *w*, ask if $\exists n. H_M(w, n) = 1$ is a theorem.

The Details

Defining the H_M and F_M functions:

$$\begin{split} F_M(left, right, q, n) &= \\ &\text{if}((q = q_{accept}) \lor (q = q_{reject})) \text{ then } 1 \\ &\text{else if}(n == 0) \text{ then } 0 \\ &\text{else let } c = \text{mod}(right, K) \text{ in} \\ &\text{let } (q', c', dir) = \delta_M(q, c) \text{ in} \\ &\text{if}(dir = L) \ F_M(\text{div}(left, K), K * (right - c + c') + \text{mod}(left, K), q', n - 1) \\ &\text{else } F_M(K * left + c', \text{div}(right, K), q', n - 1) \\ &H_M(w, n) = F_M(0, w, q_0, n) \end{split}$$

Note: I'm assuming that the blank symbol is encoded with 0. This allows there to be an infinite number of blanks to the right of w. This simulation corresponds to a machine with a two-way infinite tape – that was easier.

A Final Remark

T $_{\mathbb{N},+,*}$ is Turing-recognizable.

Proof (sketch):

- A TM can enumerate all strings in lexigraphical order and check each one to see if it is a proof for the proposed theorem.
- If the proposed theorem is a theorem, then it has a proof, and there is some shortest proof. When the TM encounters this proof, it accepts.
- If the proposed theorem is not a theorem, then it has a no proof, and this TM will loop.
- $:: T_{\mathbb{N},+,*}$ is Turing-recognizable as claimed.

Reading List:

- Today: Sipser, 6.1
- Nov. 24: Sipser, 6.2
- Nov. 27: Everything else about complexity theory.
- Nov. 29: The GHz race is over, and what it means for you.
- Dec. 1: Surprise (?)