
Proofs
Mark Greenstreet, CpSc 421, Term 1, 2006/07

Proposistional Logic

Number Theory
Proofs are decidable.

Theorems are not.

CpSc 421 — 22 November 2006 – p.1/14

Proof Rules for Proposistions
Rule Name

0.
Given p

∴ p
Hypothesis

1.
p

∴ p ∨ q
Disjunctive Addition

2.
p ∨ q

∴ q ∨ v
Commutativity of Disjunction

3.
p ∨ q, ¬p

∴ q
Disjunctive Simplification

4.
p ∧ q

∴ p
Conjunctive Simplification

5.
p ∧ q

∴ q ∧ p
Commutativity of Conjunction

CpSc 421 — 22 November 2006 – p.2/14

More Proof Rules
Rule Name

6.
p, q

∴ p
Conjunction

7.
p, p ⇒ q

∴ q
Modus Ponens

8.
¬q, p ⇒ q

∴ ¬p
Modus Tollens

9.
p ⇒ q, q ⇒ r

∴ p ⇒ r
Transitivity of Implication

10.
p ∨ qigap 6 p ∨ r

∴ q ∨ r
Resolution

CpSc 421 — 22 November 2006 – p.3/14

A Simple Proof
Given: ¬p ∧ q, r ⇒ p, ¬r ⇒ s, s ⇒ t.

Prove: t.

Step Justification Stringification

1. ¬p ∧ q Hypothesis 1 #¬p ∧ q, 0, 1

2. ¬p Conjunctive Simplification #¬p, 4, 1

3. r ⇒ p Hypothesis 2 #r ⇒ p, 0, 2

4. ¬r Modus tollens, steps 2 & 3 #¬r, 8, 2, 3

5. ¬r ⇒ s Hypothesis 3 #¬r ⇒ s, 0, 3

6. s Modus ponens, steps 4 & 5 #s, 7, 4, 5

7. s ⇒ t Hypothesis 4 #s ⇒ t, 0, 4

8. t Modus ponens, steps 6 & 7 #t, 7, 6, 7

CpSc 421 — 22 November 2006 – p.4/14

A Grammar for Proofs
Let Σ = {0,1, v,#,,,∧,∨,¬,⇒,(,)}.

The grammar:

Proof → Hypotheses #ProofSteps #Conclusion

Hypotheses → ǫ | HypothesisList

HypothesisList → Hypothesis | HypothesisList ,Hypothesis

Hypothesis → Proposition

Proposition → Prop1 | Prop1 ⇒Proposition

Prop1 → Prop2 | Prop1 ∨Prop2

Prop2 → Prop3 | Prop2 ∧Prop3

Prop3 → Prop4 | ¬Prop3

Prop4 → Variable | (Proposition)

Variable → vNumber

Number → Digit | Number Digit

Digit → 0 | 1

CpSc 421 — 22 November 2006 – p.5/14

Proof Grammar (cont)
The rest of the grammar

ProofSteps → ProofStep | ProofSteps | #ProofStep

ProofStep → Proposition ,ProofRule RuleArgs

ProofRule → Number

RuleArgs → ǫ | ,Number RuleArgs

Conclusion → Proposition

Example, the proof from slide 4. Let p → v000, q → v001, r → v010, s → v011,

t → v100. The string corresponding to the proof from slide 4 is:

¬v000 ∧ v001,v010 ⇒ v000,¬v010 ⇒ v011,v011 ⇒ v100

#¬v000 ∧ v001, 0, 1#¬v000, 4, 1#v010 ⇒ v000, 0, 2#¬v010, 8, 2, 3

#¬v010 ⇒ v011, 0, 3#v011, 7, 4, 5#v011 ⇒ v100, 0, 4#v100, 7, 6, 7

#v100

CpSc 421 — 22 November 2006 – p.6/14

A Language for Proofs
Let P = {w | w in a valid proof}.

P is Turing-decidable.
Proof: construct a Turing machine, MP that on input w:

1. MP first makes sure that w is generated by the grammar given on slides 5
and 6.

2. For each ProofStep, Proposition ,ProofRule RuleArgs, in w:
A. MP makes sure that each argument to the rule refers to a hypothesis or a

previous proof-step.
B. MP applies the proof rule with the given arguments and makes sure that

the result matches the proposition give from the proof step.

3. MP makes sure that the Conclusion matches the Proposition of the final
ProofStep.

CpSc 421 — 22 November 2006 – p.7/14

A Language for Theorems
Let
T = {Hypotheses#Conclusion | ∃u. Hypotheses#u#Conclusion ∈ P}.

T is Turing-Decidable.
Each propositional variable can be either true or false.

Just try all combinations and make sure that the claim holds

This was easy because our language was so simple.

We can add universal and existential quantifiers, and the resulting
theory is still decidable. Again, for any given formula, there are only
a finite number of combinations that the decider Turing machine
needs to check.

CpSc 421 — 22 November 2006 – p.8/14

Another Decidable Theory
Add variables that are quantified over the natural numbers, +, <, =,
and >.

We can define rules for proofs and a new language of proofs, PN,+

and a new language of theorems, TN,+.

PN,+ is decidable. There are a few more proof rules, but the basic
approach remains the same.

TN,+ is decidable.

We can show this by building a clever DFA for addition (remember the DFAs
that check binary addition?).

We use an NFA to verify existentially quantified variables.

We use language complement and an NFA to verify universally quantified
variables.

The details are in Sipser (see theorem 6.12).

CpSc 421 — 22 November 2006 – p.9/14

Natural Numbers with + and ∗
Add *.

Note that we can get subtraction, division, and mod using
quantifiers:

∃q. (q ∗ x ≤ y) ∧ ((q + 1) ∗ x > y) ∧ ϕ sets q to div(y, x) = ⌊y/x⌋ in formula ϕ.

∃r. (y = x ∗ div(y, x) + r) ∧ ϕ sets r to mod(y, x) in formula ϕ.

∃d. (y = x + d) ∧ ϕ sets d to y − x in formula ϕ.

We can define rules for proofs and a new language of proofs,
PN,+,∗ and a new language of theorems, TN,+,∗.

PN,+,∗ is decidable. There are a few more proof rules, but the basic
approach remains the same.

TN,+,∗ is NOT decidable.

CpSc 421 — 22 November 2006 – p.10/14

Simulating a Stack with N, +, and −
Let K = |Γ|+ 1 where Γ is the stack alphabet.

S′ ← push(S, c) becomes ∃S′. (S′ = K ∗ S + c).

(S′, c)← pop(S) becomes (S′ = div(S, K)) ∧ (c = mod(S, K)).

Examples:
Let Γ = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Let

S0 = 0, an empty initial stack

S1 = push(S0, 3) = 3

S2 = push(S1, 8) = 38

S3 = push(S2, 4) = 382

(S4, c) = pop(S3) = (38, 2)

. . .

Note that we can represent strings with integers and manipulate
them using ∗, div, and mod in the same way as we represented a
stack. CpSc 421 — 22 November 2006 – p.11/14

An Undecidable Formula
Given M , the integer corresponding to the string that describes
some Turing machine, and w, the integer corresponding to a string
that is the input for that Turing machine, we’ll write define function
HM (w, n) which returns 1 if M halts after at most n moves, and 0
otherwise.

We do this by simulating M using a 2PDA
We implement the stacks for the PDAs using integers as described above.

We simluate M with a recursive function that returns 1 if it is in state qaccept or

qreject and returns the result of a recursive call with arguments corresponding

to the next state of M otherwise.

M halts on input w iff ∃n. HM (w, n) = 1. Thus, to decide if M halts
on input w, ask if ∃n. HM (w, n) = 1 is a theorem.

CpSc 421 — 22 November 2006 – p.12/14

The Details
Defining the HM and FM functions:

FM (left , right , q, n) =

if((q = qaccept) ∨ (q = qreject)) then 1

else if(n == 0) then 0

else let c = mod(right , K) in

let (q′, c′, dir) = δM (q, c) in

if(dir = L) FM (div(left , K), K ∗ (right − c + c′) + mod(left , K), q′, n − 1)

else FM (K ∗ left + c′, div(right , K), q′, n − 1)

HM (w, n) = FM (0, w, q0, n)

Note: I’m assuming that the blank symbol is encoded with 0. This allows there to be

an infinite number of blanks to the right of w. This simulation corresponds to a

machine with a two-way infinite tape – that was easier.

CpSc 421 — 22 November 2006 – p.13/14

A Final Remark
TN,+,∗ is Turing-recognizable.

Proof (sketch):
A TM can enumerate all strings in lexigraphical order and check each one to
see if it is a proof for the proposed theorem.

If the proposed theorem is a theorem, then it has a proof, and there is some
shortest proof. When the TM encounters this proof, it accepts.

If the proposed theorem is not a theorem, then it has a no proof, and this TM
will loop.

∴ TN,+,∗ is Turing-recognizable as claimed.

CpSc 421 — 22 November 2006 – p.14/14

Reading List:
Today: Sipser, 6.1

Nov. 24: Sipser, 6.2

Nov. 27: Everything else about complexity theory.

Nov. 29: The GHz race is over, and what it means for you.

Dec. 1: Surprise (?)

CpSc 421 — 22 November 2006 – p.15/14

	Proof Rules for Proposistions
	More Proof Rules
	A Simple Proof
	A Grammar for Proofs
	Proof Grammar (cont)
	A Language for Proofs
	A Language for Theorems
	Another Decidable Theory
	Natural Numbers with $+$ and $*$
	Simulating a Stack with $mathbb {N}$, $+$, and $-$
	An Undecidable Formula
	The Details
	A Final Remark
	Reading List:

