
Reductions and
Computational Histories

Mark Greenstreet, CpSc 421, Term 1, 2006/07

The Idea of Using Reductions

Proving Undecidable Problems Using Reductions

CpSc 421 — 10 November 2006 – p.1/??



Anatomy of a Reduction Proof (1/2)
Want to show that A � B.

We can reduce the problem of deciding whether or not a string w is
in A to deciding whether or not string w

′ is in B if for every string w,
we can derive a string w′ such that (w ∈ A) ⇔ (w′ ∈ B).

In this case, we say that A reduces to B, that B is at least as hard as A, and
that A is no harder than B.

In general, we can talk about what we are allowed to do to transform w to w′. In
this class, we will typically allow any transformation that can be performed by a
Turing machine. In this case, we say that A is Turing reducible to B.

In other contexts, we could talk about “polynomial time reductions”, “log-space

reduction”, etc.

CpSc 421 — 10 November 2006 – p.2/??



Anatomy of a Reduction Proof (2/2)
For problems in this class, reduction typically involves a bunch of Turing Machines:

MB a machine that decides (recognizes, etc.) B.

Often, A is defined for strings that include TM descriptions. e.g.

A = {M#w | where M is a TM that . . .}

We define a TM, MA that decides (recognizes, etc.) A by:
Constructing a new machine, M ′ based on M and possibly w.
Runs MB on an input that includes a description of M ′.
MA accepts if MB accepts and MA rejects if MB rejects (and loops if MB

loops).
NOTE: we never actually run M ′ on anything!

CpSc 421 — 10 November 2006 – p.3/??



Anatomy of a Reduction Proof (2/2)
For problems in this class, reduction typically involves a bunch of Turing Machines:

We define a TM, MA that decides (recognizes, etc.) A by:
Constructing a new machine, M ′ based on M and possibly w.
Runs MB on an input that includes a description of M ′.
MA accepts if MB accepts and MA rejects if MB rejects (and loops if MB

loops).
NOTE: we never actually run M ′ on anything!

Thus we have 4 TM’s:
MB : A machine that we are given that decides (recognizes, etc.) B.
MA: A machine that we construct that decides (recognizes, etc.) A by using
MB .
M : A machine description that is part of the input to A.
M ′: A machine description that MA derives from its input and includes in
the input to MB .
Note that to test w ∈ A, we run machine MA which in turn runs machine
MB on string w′.
w includes a description of M , and w′ includes a description of M ′. We
don’t actually run these machines, we just manipulate their descriptions. In
particular, MB may or may not simulate M ′.

CpSc 421 — 10 November 2006 – p.3/??



Three Java Programs (1/3)
Program 1:

class hello {

public static void main(String[] args) {

System.out.println("Hello, world.");

}

}

CpSc 421 — 10 November 2006 – p.4/??



Three Java Programs (2/3)
Program 2:

class H {

public static void main(String[] args) {

System.out.println(

"class hello {");

System.out.println(

" public static void main(String[] args) {");

System.out.println(

" System.out.println(\"Hello, world.\");");

System.out.println(

" }");

System.out.println(

"}");

}

}

CpSc 421 — 10 November 2006 – p.5/??



Three Java Programs (3/3)
Program 3:

class X {

public static void main(String[] args) {

System.out.println(

"class hello {");

System.out.println(

" public static void main(String[] args) {");

System.out.println(

" while(true);");

System.out.println(

" }");

System.out.println(

"}");

}

}

CpSc 421 — 10 November 2006 – p.6/??



A Typical Reduction
Outcome = { accept, reject, loop}
Outcome MA(String M#w) {

M
′ = construct new TM(M and w

′);
w
′ = construct new String(M and w

′);
if(MB(M

′#w
′) == accept) return(accept);

else return(reject);
}

CpSc 421 — 10 November 2006 – p.7/??



REGULAR is Undecidable
Let REGULAR = {M | L(M) is regular}.

We’ll show that REGULAR is undecidable by reducing ATM to
REGULAR.

Assume that we have MREGULAR with L(MREGULAR) = REGULAR.

Define MATM
such that on input M#w:

MATM
constructs the description of Turing machine M ′

• On input w′, M ′ checks to see if w′ ∈ 0n1n.
• If w′ ∈ 0n1n, then M ′ accepts w′.
• Otherwise M ′ runs M on input w.
• If M accepts w, then M ′ accepts w′.
MATM

runs MREGULAR with the description of M ′ as its input.

If MREGULAR accepts M ′, then MATM
accepts M#w.

If MREGULAR rejects M ′, then MATM
rejects M#w.

M ′ accepts Σ∗ if M accepts w

M ′ accepts 0n1n if M does not accept w.

Thus, L(MATM) = {M#w | M accepts w} = ATM .

We have shown ATM � REGULAR.
CpSc 421 — 10 November 2006 – p.8/??



ETM � REGULAR
Define METM

such that on input M :

METM
constructs the description of Turing machine M ′

On input w′, M ′ checks if M ∈ ETM .
If M ∈ overlineETM and w′ ∈ 0n1n,
then M ′ accepts w′.
Otherwise M ′ loops.

METM
runs MREGULAR with the description of M ′ as its input.

If MREGULAR accepts M ′, then METM
accepts M .

If MREGULAR rejects M ′, then METM
rejects M .

If L(M) = ∅, then L(M ′) = ∅, and METM
accepts.

If L(M) 6= ∅, then L(M ′) = 0n1n, and METM
rejects.

This shows ETM � REGULAR.

Thus, both ATM � REGULAR, and ETM � REGULAR.

Neither ATM � ETM nor ETM � ATM .

∴ REGULAR is harder than ATM (Turing recognizable) and harder then ETM

(Turing corecognizable).
CpSc 421 — 10 November 2006 – p.9/??



Linear Bounded Automata
A linear bounded automaton (LBA) is like a Turing Machine except
that the input starts with a ⊢ and ends with a ⊣.

When an LBA reads ⊢ it must write ⊢ and move its head to the right.

When an LBA reads ⊣ it must write ⊣ and move its head to the left.

Thus, an LBA only uses as much tape as the size of its input.

Let ALBA = {B#w | LBA B accepts w}. ALBA is Turing decidable.
Proof:

Let w be an input to an LBA with tape alphabet Γ.

The LBA has at most (|w| + 2) ∗ |Γ||w| possible configurations:
|w| + 2 tape squares (including the ⊢ and ⊣).
|w| of them have |Γ| possible values each.

Just simulate B. If it within after (|w| + 2) ∗ |Γ||w| steps, you know if it accepts

or rejects. Otherwise, it must be looping.

CpSc 421 — 10 November 2006 – p.10/??



ELBA is Not Decidable
We’ll reduce ATM to ELBA.

Assume that M
ELBA

is a TM with L(M
ELBA

) = ELBA.

Let MATM
be a TM that on input string M#w:

constructs an LBA, B′ that on input w′:
Checks to make sure that w′ is of the form ⊢ w�∗ ⊣.
Runs M on w′.
If M accepts, then B′ accepts.
If M reaches the ⊣, then B′ rejects.

MATM
runs M

ELBA
on B′.

If M
ELBA

accepts, MATM
accepts.

If M
ELBA

rejects, MATM
rejects.

If w ∈ L(M), then there is some integer n such that M accepts w after n moves. M

moves at most n squares to the right when accepting w. Thus, B′ accepts
⊢ w�n ⊣.

(w ∈ L(M)) ⇔ (L(B′) 6= ∅).

∴ ATM � ELBA.
CpSc 421 — 10 November 2006 – p.11/??



Computational Histories

CpSc 421 — 10 November 2006 – p.12/??



ELBA is Not Decidable (again)

CpSc 421 — 10 November 2006 – p.13/??



Reading List:
Today: Sipser, 5.1

Nov. 13: Remembrance Day (no lecture)

Nov. 15: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3

Nov. 22: Sipser, 6.1

Nov. 24: Sipser, 6.2

Nov. 27: Sipser, 6.2 (cont., final exam cut-off)

Nov. 29: The GHz race is over, and what it means for you

Dec. 1: Everything else about complexity theory

CpSc 421 — 10 November 2006 – p.14/??


	Anatomy of a Reduction Proof (1/2)
	Anatomy of a Reduction Proof (2/2)
	Three Java Programs (1/3)
	Three Java Programs (2/3)
	Three Java Programs (3/3)
	A Typical Reduction
	$REG $ is Undecidable
	$ETM preceq REG $
	Linear Bounded Automata
	$ELBA $ is Not Decidable
	Computational Histories
	$ELBA $ is Not Decidable (again)
	Reading List:

