Reductionsand
Computational Histories

Mark Greenstreet, CpSc 421, Term 1, 2006/07

@ The Idea of Using Reductions

@ Proving Undecidable Problems Using Reductions

CpSc 421 — 10 November 2006 — p.1/??

Anatomy of a Reduction Proof (1/2)

Want to show that A < B.

® We can reduce the problem of deciding whether or not a string w is
in A to deciding whether or not string w’ is in B if for every string w,
we can derive a string w’ such that (w € A) < (v’ € B).

® In this case, we say that A reduces to B, that B is at least as hard as A, and
that A is no harder than B.

® In general, we can talk about what we are allowed to do to transform w to w’. In
this class, we will typically allow any transformation that can be performed by a
Turing machine. In this case, we say that A is Turing reducible to B.

® In other contexts, we could talk about “polynomial time reductions”, “log-space
reduction”, etc.

CpSc 421 — 10 November 2006 — p.2/??

Anatomy of a Reduction Proof (2/2)

@ For problems in this class, reduction typically involves a bunch of Turing Machines:

®)/ a machine that decides (recognizes, etc.) B.

® Often, A is defined for strings that include TM descriptions. e.qg.

A = {M+#w | where MisaTMthat...}

® \We define a TM, M 4 that decides (recognizes, etc.) A by:

Constructing a new machine, M’ based on M and possibly w.

Runs Mg on an input that includes a description of M.

M 4 accepts if Mg accepts and M 4 rejects if M g rejects (and loops if M p
loops).

NOTE: we never actually run M’ on anything!

CpSc 421 — 10 November 2006 — p.3/??

Anatomy of a Reduction Proof (2/2)

@ For problems in this class, reduction typically involves a bunch of Turing Machines:

® \We define a TM, M 4 that decides (recognizes, etc.) A by:

Constructing a new machine, M’ based on M and possibly w.

Runs Mg on an input that includes a description of M’.

M 4 accepts if Mg accepts and M 4 rejects if M g rejects (and loops if M p
loops).

NOTE: we never actually run M’ on anything!

® Thus we have 4 TM’s:

Mpg: A machine that we are given that decides (recognizes, etc.) B.

M 4: A machine that we construct that decides (recognizes, etc.) A by using
Mp.

M: A machine description that is part of the input to A.

M’: A machine description that M 4 derives from its input and includes in
the inputto Mp.

Note that to test w € A, we run machine M 4 which in turn runs machine
Mg on string w’.

w includes a description of M, and w’ includes a description of M’. We
don’t actually run these machines, we just manipulate their descriptions. In
particular, Mg may or may not simulate M.

CpSc 421 — 10 November 2006 — p.3/??

Three Java Programs (1/3)

Program 1:

class hello {
public static void main(String[] args) {
Systemout.println("Hello, world.");

}
}

CpSc 421 — 10 November 2006 — p.4/??

Three Java Programs (2/3)

Program 2:

class H {
public static void main(String[] args) {

System out . printl n(

"class hello {");

System out . printl n(
public static void main(String[] args) {");

System out . printl n(
Systemout.println(\"Hello, world.\");");

System out . printl n(

)
System out . printl n(

")

CpSc 421 — 10 November 2006 — p.5/??

Three Java Programs (3/3)

Program 3:

class X {
public static void main(String[] args) {
System out . printl n(
"class hello {");
System out . printl n(
public static void main(String[] args) {");
System out. printl n(
while(true);");
System out. printl n(
")
System out . printl n(

")

CpSc 421 — 10 November 2006 — p.6/??

A Typical Reduction

Qut come = { accept, reject, loop}

Qut come Ma(String M#w) {
M’ = construct _newTM M and w');
w' = construct _newString(M and w');
| f (Mp(M'#w') == accept) return(accept) ;
el se return(reject) ;

CpSc 421 — 10 November 2006 — p.7/??

REGULAR 1sUndecidable

® Let REGULAR = {M | L(M) is regular}.

® We'll show that REGULAR is undecidable by reducing A1y, to
REGULAR.
® Assume that we have Mrecurar With L(Mrecurar) = REGULAR.

® Define M 4 ., such that on input M #w:
® My, constructs the description of Turing machine M’
® Oninput w’, M’ checks to see if w’ € 01",
® Ifw’ € 0™1", then M’ accepts w’.
® Otherwise M’ runs M on input w.
® If M accepts w, then M’ accepts w’.
® My, YUns Mrrcurar With the description of M’ as its input.
® If MrecuLar accepts M’, then Mj ., accepts M#w.

® If MreguLAR rejects M’, then M4, rejects M#w.

®)/’ accepts X* if M accepts w
®)/’ accepts 01" if M does not accept w.
® Thus, L(IMATM) = {M#w | M accepts w} = Ary.

® We have shown A7y, < REGULAR.

CpSc 421 — 10 November 2006 — p.8/??

Ery = REGULAR

® Define Mg, such that on input M:

® Mg, constructs the description of Turing machine M’
® Oninputw’, M’ checksif M € Eqpy.
® |If M € overlineE) and w’ € 0™17,
then M’ accepts w’.
® Otherwise M’ loops.

® Mg, runs Mrecurar With the description of M’ as its input.
® If Mrecurar accepts M’, then Mg, accepts M.

® If Mrecurar rejects M’, then Mg, rejects M.
If L(M) =0, then L(M") =0, and Mg, accepts.
If L(M) # 0, then L(M") = 0"1™, and Mg,,, rejects.
This shows E7y; < REGULAR.

Thus, both A7y < REGULAR, and Ery; < REGULAR.

Neither Ay <X Eppr nor Eqpyr =< Ay

. REGULAR is harder than A 75, (Turing recognizable) and harder then E 1,

. . CpSc 421 — 10 November 2006 — p.9/??
(Turing corecognizable).

Linear Bounded Automata

® A linear bounded automaton (LBA) is like a Turing Machine except
that the input starts with a - and ends with a .

® \When an LBA reads I it must write - and move its head to the right.

® \When an LBA reads - it must write 4 and move its head to the left.

® Thus, an LBA only uses as much tape as the size of its input.

® lLet Appa = {B#w | LBA B acceptsw}. Appa is Turing decidable.

Proof:
® Letw be aninput to an LBA with tape alphabet T".

® The LBA has at most (Jw| + 2) = |T'|l**| possible configurations:
® |w| + 2 tape squares (including the - and).
® |w| of them have |I'| possible values each.

® Just simulate B. If it within after (Jw| + 2) * |T'||*| steps, you know if it accepts

or rejects. Otherwise, it must be looping.

CpSc 421 — 10 November 2006 — p.10/??

E;rp4 1SNt Decidable

® Wwe'llreduce A7y, to Erpa.

® Assume that Mm is a TM with L(Mm) = Frpa.

® Let M4, beaTM that on input string M #w:

® constructs an LBA, B’ that on input w’:
® Checks to make sure that w’ is of the form F wlI* .
® Runs M on w’.
® |f M accepts, then B’ accepts.
® |f M reaches the -, then B’ rejects.

/
® My, runs Mzs54 on B’
® |f M%754 accepts, M4, accepts.

® If M%75 rejects, My ., rejects.

® Ifw € L(M), then there is some integer n such that M accepts w after n moves. M
moves at most n squares to the right when accepting w. Thus, B’ accepts
= wl™ H.

® (we L(M)) s (L(B') +#0).

® A7y < Erpa.
CpSc 421 — 10 November 2006 — p.11/??

Computational Histories

CpSc 421 — 10 November 2006 — p.12/??

Erpa 1SNot Decidable (again)

CpSc 421 — 10 November 2006 — p.13/??

Reading List:

® Today: Sipser, 5.1

Nov. 13: Remembrance Day (no lecture)

Nov. 15;: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3

Nov. 22: Sipser, 6.1

Nov. 24: Sipser, 6.2

Nov. 27: Sipser, 6.2 (cont., final exam cut-off)

Nov. 29: The GHz race is over, and what it means for you

Dec.

1: Everything else about complexity theory

CpSc 421 — 10 November 2006 — p.14/??

	Anatomy of a Reduction Proof (1/2)
	Anatomy of a Reduction Proof (2/2)
	Three Java Programs (1/3)
	Three Java Programs (2/3)
	Three Java Programs (3/3)
	A Typical Reduction
	$REG $ is Undecidable
	$ETM preceq REG $
	Linear Bounded Automata
	$ELBA $ is Not Decidable
	Computational Histories
	$ELBA $ is Not Decidable (again)
	Reading List:

