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The Idea of Using Reductions

Proving Undecidable Problems Using Reductions
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Reductions
Let’s say we want to solve problem of class A and we
know how to solve problems of class B.

If we can find a way to convert problem any problem of class A into
some problem of class B.

Then, we can solve all problems of class B as well.

We can also talk about how much effort is need to transform the
problem. For most of what we are interested in here, it is enough
that the transformation can be computed by a Turing machine.

CpSc 421 — 8 November 2006 – p.2/11



Reducing Multiplication to Addition
We can convert the problem of multiplying natural numbers into the problem of
addition:

product = 0;

for(int i = 0; i < x; i++)

product = product + y;

We have reduced multiplication to addition.

We can do better if we allow bit shifts and tests:

product = 0;

while(x > 0) {

if(odd(x)) product = product + y;

x = x >> 1; y = y << 1;

}

We have reduced multiplication to addition and bit shifts and tests.

How about if we have addition, right shifts, and squaring?

product = ((x+y)ˆ2 - (x-y)ˆ2) >> 2;
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More Examples
Scheduling problems that are linear programs.

Routing problems that are shortest path in a graph.

Some problems that look NP complete are bipartite matching in
disguise.

NP completeness proofs are often done by reduction.

The whole idea of programming with an API is the practical use of
reductions: reducing parts of a software project to functionality that
is already present in the API.

“But your can’t look up all those license numbers in time,”
Drake objected.
“We don’t have to, Paul. We merely arrange a list and look
for duplications.”
— PERRY MASON (The Case of the Angry Mourner, 1951)
(quote found in Knuth, Vol. III, p. 1).
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A Warning
We can show that B is at least as hard as A by reducing A to B.

Reducing A to B shows that A is at least as easy as B.

Let A = {w | w is the binary representation of a composite number}. We can
reduce A to the halting problem:

while(true) {

if((w % i) == 0) accept;
i = i+1;

}

This program halts iff w is composite. Thus, we have shown that
testing for compositeness in no harder than the halting problem. In
fact, it is much easier.
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The Halting Problem
Let HALT = {M#w | Turing machine M halts when run with input w}.

We can reduce ATM to HALT :
Create a Turing machine N that on input M#w

N creates a string M ′#w where M ′ is like M but has a new state, loop.

All transitions of M to state reject are replaced with transitions to loop.
If M accepts w so does M ′.
If M rejects or loops on w, M ′ loops.
Thus, M#w in ATM iff M ′#w ∈ HALT .

N now runs HALT on M ′#w.
If HALT accepts, N accepts.
If HALT rejects, N rejects.

N recognizes ATM .

This shows that HALT is at least as hard as ATM .

ATM is undecidable, therefore HALT is undecidable.

We can show that HALT reduces to ATM ; thus HALT and ATM
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Language Emptiness
Let ETM = {M | L(M) = ∅}.

We can reduce ATM to ETM :

Create a Turing machine N that on input M#w

N writes the description for TM M ′:
M ′ rejects if its input is not equal to w.
Otherwise, M ′ runs M on input w:
· If M accepts w so does M ′.
· If M rejects w so does M ′.
· If M loops on w so does M ′.

If M accepts w, then L(M ′) = {w}.
Otherwise L(M ′) = ∅.

N runs the machine for ETM on M ′.
If M ′ ∈ ETM , N accepts.
Otherwise, N rejects.

L(N) = ATM .

This shows that ETM is at least as hard as ATM .

∴ ETM is undecidable.
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A Note on the Proof
We just showed that ETM is at least as hard as ATM .

At each step, we were careful to make sure that the machine that called the
“sub-machine” would do the same thing (accept, reject, or loop) as the
“sub-machine”.

If we flip accept and reject, then what should we do with loop?

Sipser avoids this by using reduction to prove undecidability – he shows that no
decider exists for the specified problem. Thus, he doesn’t need to consider looping
behaviours.

Our argument shows a bit more, we’ve not only shown that ETM is undecidable,
we’ve also shown that it is at least as hard as Turing co-recognizable (but
undecidable).

In fact, ETM is Turing co-recognizable.

We can reduce a Turing recognizable (but undecidable) language to a Turing

co-recognizable language. If so, we would have shown that all Turing recognizable

languages are Turing co-recognizable, and this would make them Turing decidable.

But, we know that there are Turing recognizable languages that are undecidable.
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Anatomy of a Reduction Proof
Want to show that A ≺ B.

Let A be a language in class A. Let w be a string.

Find a langauge B ∈ B and construct a string w′ s.t. (w ∈ A) ⇔ (w′ ∈ B).

Typically, this involves a bunch of Turing Machines:

MB a machine that decides (recognizes, etc.) B.

Often, A is defined for strings that include TM descriptions. e.g.

A = {M#w | where M is a TM that . . .}

We define a TM, MA that decides (recognizes, etc.) A by:
Constructing a new machine, M ′ based on M and possibly w.
Runs MB on an input that includes a description of M ′.
MA accepts if MB accepts and MA rejects if MB rejects (and loops if MB

loops).
NOTE: we never actually run M ′ on anything!
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Reducing ETM to ATM

Let M be a Turing machine. To determing if L(M) = ∅:

Construct a new Turing machine M ′. Here’s what M ′ does:

n = 1;

while(true) {

for(i = 1; i < n; i++) {

w = string(i);

simulate M for i steps on input w;

if( M accepts) accept;

}

}

For any w, test M ′#w ∈ ATM .

(M ′#w ∈ ATM ) ⇔ (L(M ′) = ∅).

Thus, we’ve reduced ETM to ATM .

We’ve shown that ETM is at least as hard as ATM (slide 7),
and that ETM is at most as hard as ATM (this slide).

∴ ETM is undecidable and Turing co-recognizable.
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REGULAR is Undecidable
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Reading List:
Today: Sipser, 5.1

Nov. 10: Sipser, 5.1 (cont.)

Nov. 13: Remembrance Day (no lecture)

Nov. 15: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3
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