Reductions

Mark Greenstreet, CpSc 421, Term 1, 2006/07

The Idea of Using Reductions
Proving Undecidable Problems Using Reductions

Reductions

Let's say we want to solve problem of class A and we know how to solve problems of class B.

- If we can find a way to convert problem any problem of class A into some problem of class B.
- Then, we can solve all problems of class B as well.
- We can also talk about how much effort is need to transform the problem. For most of what we are interested in here, it is enough that the transformation can be computed by a Turing machine.

Reducing Multiplication to Addition

We can convert the problem of multiplying natural numbers into the problem of addition:

```
product = 0;
for(int i = 0; i < x; i++)
    product = product + y;
```

We have reduced multiplication to addition.
We can do better if we allow bit shifts and tests:

```
product = 0;
while(x > 0) {
    if(odd(x)) product = product + y;
    x = x >> 1; y = y << 1;
}
```

We have reduced multiplication to addition and bit shifts and tests.

- How about if we have addition, right shifts, and squaring?

$$
\text { product }=\left((x+y)^{\wedge} 2-(x-y)^{\wedge} 2\right) \gg 2 \text {; }
$$

More Examples

- Scheduling problems that are linear programs.
- Routing problems that are shortest path in a graph.
- Some problems that look NP complete are bipartite matching in disguise.
- NP completeness proofs are often done by reduction.
- The whole idea of programming with an API is the practical use of reductions: reducing parts of a software project to functionality that is already present in the API.
"But your can't look up all those license numbers in time,"
Drake objected.
"We don't have to, Paul. We merely arrange a list and look for duplications."
- PERRY MASON (The Case of the Angry Mourner, 1951) (quote found in Knuth, Vol. III, p. 1).

A Warning

We can show that B is at least as hard as A by reducing A to B.

- Reducing A to B shows that A is at least as easy as B.
- Let $A=\{w \mid w$ is the binary representation of a composite number $\}$. We can reduce A to the halting problem:

```
while(true) {
    if((w % i) == 0) accept;
    i = i+1;
}
```

This program halts iff w is composite. Thus, we have shown that testing for compositeness in no harder than the halting problem. In fact, it is much easier.

The Halting Problem

Let $H A L T=\{M \# w \mid$ Turing machine M halts when run with input $w\}$.

- We can reduce $A_{T M}$ to HALT:
- Create a Turing machine N that on input $M \# w$
- N creates a string $M^{\prime} \# w$ where M^{\prime} is like M but has a new state, loop.
- All transitions of M to state reject are replaced with transitions to loop.
- If M accepts w so does M^{\prime}.
- If M rejects or loops on w, M^{\prime} loops.
- Thus, $M \# w$ in $A_{T M}$ iff $M^{\prime} \# w \in H A L T$.
- N now runs HALT on $M^{\prime} \# w$.
- If $H A L T$ accepts, N accepts.
- If $H A L T$ rejects, N rejects.
- N recognizes $A_{T M}$.
- This shows that HALT is at least as hard as $A_{T M}$.
- $A_{T M}$ is undecidable, therefore $H A L T$ is undecidable.
- We can show that HALT reduces to $A_{T M}$; thus HALT and $A_{T M}$ are equivalent in hardness.

Language Emptiness

Let $E_{T M}=\{M \mid L(M)=\emptyset\}$.

- We can reduce $A_{T M}$ to $E_{T M}$:
- Create a Turing machine N that on input $M \# w$
- N writes the description for TM M^{\prime} :
- M^{\prime} rejects if its input is not equal to w.
- Otherwise, M^{\prime} runs M on input w :
- If M accepts w so does M^{\prime}.
- If M rejects w so does M^{\prime}.
- If M loops on w so does M^{\prime}.
- If M accepts w, then $L\left(M^{\prime}\right)=\{w\}$.
- Otherwise $L\left(M^{\prime}\right)=\emptyset$.
- N runs the machine for $E_{T M}$ on M^{\prime}.
- If $M^{\prime} \in E_{T M}, N$ accepts.
- Otherwise, N rejects.
- $L(N)=\overline{A_{T M}}$.

This shows that $E_{T M}$ is at least as hard as $\overline{A_{T M}}$.
$\therefore E_{T M}$ is undecidable.

A Note on the Proof

We just showed that $E_{T M}$ is at least as hard as $\overline{A_{T M}}$.
At each step, we were careful to make sure that the machine that called the "sub-machine" would do the same thing (accept, reject, or loop) as the "sub-machine".

If we flip accept and reject, then what should we do with loop?
Sipser avoids this by using reduction to prove undecidability - he shows that no decider exists for the specified problem. Thus, he doesn't need to consider looping behaviours.

Our argument shows a bit more, we've not only shown that $E_{T M}$ is undecidable, we've also shown that it is at least as hard as Turing co-recognizable (but undecidable).

In fact, $E_{T M}$ is Turing co-recognizable.
We can reduce a Turing recognizable (but undecidable) language to a Turing co-recognizable language. If so, we would have shown that all Turing recognizable languages are Turing co-recognizable, and this would make them Turing decidable. But, we know that there are Turing recognizable languages that are undecidable.

Anatomy of a Reduction Proof

Want to show that $\mathcal{A} \prec \mathcal{B}$.

Let A be a language in class \mathcal{A}. Let w be a string.
Find a langauge $B \in \mathcal{B}$ and construct a string w^{\prime} s.t. $(w \in A) \Leftrightarrow\left(w^{\prime} \in B\right)$.
Typically, this involves a bunch of Turing Machines:

- M_{B} a machine that decides (recognizes, etc.) B.
- Often, A is defined for strings that include TM descriptions. e.g.

$$
A=\{M \# w \mid \text { where } M \text { is a TM that } \ldots\}
$$

- We define a TM, M_{A} that decides (recognizes, etc.) A by:
- Constructing a new machine, M^{\prime} based on M and possibly w.
- Runs M_{B} on an input that includes a description of M^{\prime}.
- M_{A} accepts if M_{B} accepts and M_{A} rejects if M_{B} rejects (and loops if M_{B} loops).
- NOTE: we never actually run M^{\prime} on anything!

Reducing $E_{T M}$ to $\overline{A_{T M}}$

Let M be a Turing machine. To determing if $L(M)=\emptyset$:
Construct a new Turing machine M^{\prime}. Here's what M^{\prime} does:

```
n = 1;
while(true) {
    for(i = 1; i < n; i++) {
        w = string(i);
        simulate M for i steps on input w;
        if(M accepts) accept;
    }
    }
```

For any w, test $M^{\prime} \# w \in \overline{A_{T M}}$.

- $\left(M^{\prime} \# w \in \overline{A_{T M}}\right) \Leftrightarrow\left(L\left(M^{\prime}\right)=\emptyset\right)$.
- Thus, we've reduced $E_{T M}$ to $\overline{A_{T M}}$.

We've shown that $E_{T M}$ is at least as hard as $\overline{A_{T M}}$ (slide 7), and that $E_{T M}$ is at most as hard as $\overline{A_{T M}}$ (this slide).
$\therefore E_{T M}$ is undecidable and Turing co-recognizable.

REGULAR is Undecidable

Reading List:

Today: Sipser, 5.1
Nov. 10: Sipser, 5.1 (cont.)
Nov. 13: Remembrance Day (no lecture)
Nov. 15: Midterm 2
Nov. 17: Sipser, 5.2
Nov. 20: Sipser, 5.3

