
The Halting Problem
for Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2006/07

The Undecidability of ATM

Diagonalizing Turing Machines

Turing Recongizable > Turing Decidable

Turing Unrecognizable Languages

How do we know if M is a decider?

The Halting Problem

Turing Unrecognizable Languages

CpSc 421 — 6 November 2006 – p.1/9

Trying to Decide ATM

ATM = {M#w | Turing machine M accepts string w}

ATM is Turing recognizable:
We constructed a Turing Machine, U that recognizes ATM in the November 3
lecture.

U was not a decider – it would loop on input M#w if M loops on input w.

Can we make a Turing machine that decides ATM ?

This machine must halt (either accept or reject) for all possible inputs.

Assume that E is a TM that decides ATM .
We’ll show that this leads to a contradiction on the next few slides.

CpSc 421 — 6 November 2006 – p.2/9

ATM Is Undecidable
ATM = {M#w | M describes a TM that accepts string w}

Let D be a Turing machine that does not have # in its input alphabet. On input w, D

does the following:

Appends #w onto its input tape to produce w#w.

Runs E (the decider for ATM as a “subroutine”.
If E accepts w#w, D rejects.
If E rejects w#w, D accept.s.

Now, run D with its own description as its input:

If E says that D accepts when run with D as input,
then D rejects when run with D as input.

If E says that D rejects when run with D as input,
then D accepts when run with D as input.

Either way, we have a contradiction.

∴ E cannot exist.

There is no TM that decides ATM .

ATM is not Turing decidable.

CpSc 421 — 6 November 2006 – p.3/9

Why is this Diagonalization?
The set of all Turing machines is countable:

Turing Machines can be described by strings.
In the Nov. 3 lecture we described TMs using strings over the alphabet
ΣTM = {0,1,(,,,)}.
Not all strings are valid TM descriptions. Thus, |TM | ≤ |Σ∗

TM
| = |N|.

For every k ≥ 3 there is a valid TM with k states. Thus |TM | ≥ |N|.

We conclude that |TM | = |N|.

The set of all languages is uncountable.

The set of all languages has size 2|Σ
∗| = 2|N.

There are more languages than there are Turing machines.

∴ There are languages that are neither Turing decidable nor recognizable.

CpSc 421 — 6 November 2006 – p.4/9

Why is this Diagonalization?
The set of all Turing machines is countable:

The set of all languages is uncountable.

The set of all languages has size 2|Σ
∗| = 2|N. For example, with Σ = {0,1} we

have:
ǫ 0 1 00 01 10 11 000 . . .

L0 R R R R R R R R . . .

L1 A R R R R R R R . . .

L2 R A R R R R R R . . .

L3 A A R R R R R R . . .

L4 R R A R R R R R . . .

...
...

...
...

...
...

...
...

...
. . .

There are more languages than there are Turing machines.

∴ There are languages that are neither Turing decidable nor recognizable.

CpSc 421 — 6 November 2006 – p.4/9

Constructing an Undecidable Language
Consider the matrix where entry (i, j) is 1 iff Turing machine i

accepts the string that encodes Turing machine j:

M0 M1 M2 . . . M117 M118 M119 . . .

M0 ∞ ∞ ∞ . . . ∞ ∞ ∞ . . .

M1 A A A . . . A A A . . .

M2 R R R . . . R R R . . .

...
...

...
...

...
...

...
...

M117 A ∞ R . . . R R A . . .

M118 R R R . . . ∞ ∞ ∞ . . .

M119 R A ∞ . . . R A A . . .

...
...

...
...

...
...

...
...

. . .

Let LD be the language {Mi | Turing machine Mi rejects input Mi}:

CpSc 421 — 6 November 2006 – p.5/9

Constructing an Undecidable Language
Consider the matrix where entry (i, j) is 1 iff Turing machine i

accepts the string that encodes Turing machine j:

M0 M1 M2 . . . M117 M118 M119 . . .

M0 R R R . . . R R R . . .

M1 A A A . . . A A A . . .

M2 R R R . . . R R R . . .

...
...

...
...

...
...

...
...

. . .

M117 A ∞ R . . . R R A . . .

M118 R R R . . . ∞ ∞ ∞ . . .

M119 R A ∞ . . . R A A . . .

...
...

...
...

...
...

...
...

. . .

Let LD be the language {Mi | Turing machine Mi rejects input Mi}:

M0 M1 M2 . . . M117 M118 M119 . . .

LD A R A . . . A A R . . .
– p.5/9

Constructing an Undecidable Language
Consider the matrix where entry (i, j) is 1 iff Turing machine i

accepts the string that encodes Turing machine j:

Let LD be the language {Mi | Turing machine Mi rejects input Mi}:

M0 M1 M2 . . . M117 M118 M119 . . .

LD A R A . . . A A R . . .

LD is the language that we tried to construct D to decide.

CpSc 421 — 6 November 2006 – p.5/9

Diagonalization and Halting
ATM is not Turing decidable (slide 3).

ATM is Turing recognizable (Nov. 3 lecture).

The set of Turing recognizable languages is strictly larger than the set of Turing
decidable languages.

This is because a recognizer is allowed to loop: failure to halt means the
recognizer rejects.

LD = {M | M#M ∈ ATM is not Turing recognizable (slide 5).

This is because the recognizer must halt whenever M loops when run with
input M .

In fact, we could modify our machines to never use the reject state — they
could just loop to reject.

Then, recognizing LD would mean determining that the machine will never halt.

Our argument that LD is not Turing recognizable shows that this variant is not
Turing recognizable.

∴ HALT = {M#w | Turing machine M halts when run with input w} is Turing
recognizable but not Turing decidable.

HALT is not even Turing recognizable.
CpSc 421 — 6 November 2006 – p.6/9

Turing Co-Recognizable Languages
The class of Turing decidable languages is closed under
complement.

The class of Turing recognizable languages is not closed under
complement.

We say that a language, L, is Turing co-recognizable iff the complement of L is
Turing recognizable.

For example, the language

LOOPS = {M#w | Turing machine M loops when run with input w is Turing

co-recognizable because it is the complement of HALT , a Turing recognizable

language.

CpSc 421 — 6 November 2006 – p.7/9

Relating Recognizability
If a language is Turing recognizable and Turing co-recognizable,
then it is Turing decidable.

Let L be a language that is both Turing recognizable and co-recognizable.

Because L is Turing recognizable, there is a Turing machine, ML that for any
w ∈ L accepts w, and for any w 6∈ L rejects or loops.

Because L is Turing co-recognizable, there is a Turing machine, Mco−L that for
any w 6∈ L rejects w, and for any w ∈ L accepts or loops.

Now, we build a new TM, N that has two tapes, one for ML and one for
Mco−L. Each step of L takes a step for each of ML and Mco−L. If either ML

or Mco−L accepts N accepts. Likewiese, if either rejects, N rejects. N is
guaranteed to halt.

N is a TM that decides L.

∴ L is Turing decidable.

CpSc 421 — 6 November 2006 – p.8/9

Why Allow Loopy Machines?
Couldn’t we just insist that we’ll only consider TM’s that halt on all
inputs (i.e. deciders)?

Problem 1:
We could do this, and our diagonalization would still work.

The obvious way to construct a TM for the diagonal (slide 3) produces a TM

that loops. Language LD remains undecidable.

Problem 2: How do we know if a TM is a decider?
This is the question of whether or not a TM halts on all inputs, not just on one,
specific input.

We say that a TM is total iff it halts on all inputs, and we write

TOTAL = {M | M is a TM that halts on all inputs}

The language TOTAL is neither Turing recognizable nor co-recognizable.

Thus, deciding whether or not a TM is a decider is even harder than the halting

problem.
CpSc 421 — 6 November 2006 – p.9/9

Reading List:
Today: Sipser, 4.2 (midterm 2 cutoff)

Nov. 8: Sipser, 5.1

Nov. 10: Sipser, 5.1 (cont.)

Nov. 13: Remembrance Day (no lecture)

Nov. 15: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3

CpSc 421 — 6 November 2006 – p.10/9

	Trying to Decide $A_{mathit {TM}}$
	$A_{mathit {TM}}$ Is Undecidable
	Why is this Diagonalization?
	Constructing an Undecidable Language
	Diagonalization and Halting
	Turing Co-Recognizable Languages
	Relating Recognizability
	Why Allow Loopy Machines?
	Reading List:

