The Halting Problem for Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2006/07

- The Undecidability of A_{TM}
 - Diagonalizing Turing Machines
 - Turing Recongizable > Turing Decidable
- Turing Unrecognizable Languages
 - How do we know if M is a decider?
 - The Halting Problem
 - Turing Unrecognizable Languages

Trying to Decide A_{TM}

- $A_{TM} = \{M \# w \mid \text{Turing machine } M \text{ accepts string } w\}$
 - A_{TM} is Turing recognizable: We constructed a Turing Machine, U that recognizes A_{TM} in the November 3 lecture.
 - U was not a decider it would loop on input M # w if M loops on input w.
 - Can we make a Turing machine that decides A_{TM}?
 This machine must halt (either accept or reject) for all possible inputs.
- Assume that *E* is a TM that decides A_{TM} . We'll show that this leads to a contradiction on the next few slides.

A_{TM} Is Undecidable

- $A_{TM} = \{M \# w \mid M ext{ describes a TM that accepts string } w\}$
- Let D be a Turing machine that does not have # in its input alphabet. On input w, D does the following:
 - Appends #w onto its input tape to produce w #w.
 - Runs E (the decider for A_{TM} as a "subroutine".
 - If E accepts w # w, D rejects.
 - If E rejects w # w, D accept.s.
 - Now, run D with its own description as its input:
 - If E says that D accepts when run with D as input, then D rejects when run with D as input.
 - If E says that D rejects when run with D as input, then D accepts when run with D as input.
 - Either way, we have a contradiction.
 - $\therefore E$ cannot exist.
 - There is no TM that decides A_{TM} .
 - A_{TM} is not Turing decidable.

Why is this Diagonalization?

- The set of all Turing machines is countable:
 - Turing Machines can be described by strings.
 - In the Nov. 3 lecture we described TMs using strings over the alphabet $\Sigma_{TM} = \{0, 1, (, , ,)\}.$
 - Not all strings are valid TM descriptions. Thus, $|TM| \leq |\Sigma_{TM}^*| = |\mathbb{N}|$.
 - For every $k \ge 3$ there is a valid TM with k states. Thus $|TM| \ge |\mathbb{N}|$.
 - We conclude that $|TM| = |\mathbb{N}|$.
 - The set of all languages is uncountable.
 - The set of all languages has size $2^{|\Sigma^*|} = 2^{|\mathbb{N}|}$.
- There are more languages than there are Turing machines.
 - ... There are languages that are neither Turing decidable nor recognizable.

Why is this Diagonalization?

The set of all Turing machines is countable:

The set of all languages is uncountable. The set of all languages has size $2^{|\Sigma^*|} = 2^{|\mathbb{N}}$. For example, with $\Sigma = \{0, 1\}$ we have:

	ϵ	0	1	00	01	10	11	000	
L_0	R	R	R	R	R	R	R	R	
L_1	A	R	R	R	R	R	R	R	
L_2	R	A	R	R	R	R	R	R	
L_3	A	A	R	R	R	R	R	R	
L_4	R	R	A	R	R	R	R	R	
:	:								

There are more languages than there are Turing machines.

... There are languages that are neither Turing decidable nor recognizable.

Constructing an Undecidable Languag

Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j:

	M_0	M_1	M_2		M_{117}	M_{118}	M_{119}	
M_0	∞	∞	∞		∞	∞	∞	
M_1	A	A	A		A	A	A	
M_2	R	R	R		R	R	R	
÷	:	:	÷	:	:	:	÷	
M_{117}	A	∞	R		R	R	A	
M_{118}	R	R	R		∞	∞	∞	
M_{119}	R	A	∞		R	A	A	
:	:	:	:	:	:	:	:	·

• Let L_D be the language $\{M_i \mid \text{Turing machine } M_i \text{ rejects input } M_i\}$:

Constructing an Undecidable Languag

Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j:

	M_0	M_1	M_2		M_{117}	M_{118}	M_{119}	
M_0	<u>R</u>	R	R		R	R	R	
M_1	A	<u>A</u>	A		A	A	A	
M_2	R	R	\underline{R}		R	R	R	
÷	:	:	:	:	:	:	:	÷.,
M_{117}	A	∞	R		<u>R</u>	R	A	
M_{118}	R	R	R		∞	$\underline{\infty}$	∞	
M_{119}	R	A	∞		R	A	<u>A</u>	
:	:	:	:	:	:	:	:	•.

• Let L_D be the language $\{M_i \mid \text{Turing machine } M_i \text{ rejects input } M_i\}$: $M_0 \quad M_1 \quad M_2 \quad \dots \quad M_{117} \quad M_{118} \quad M_{119} \quad \dots$ $L_D \quad A \quad R \quad A \quad \dots \quad A \quad A \quad R \quad \dots$

Constructing an Undecidable Language

- Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j:
- Let L_D be the language $\{M_i \mid \text{Turing machine } M_i \text{ rejects input } M_i\}$: $M_0 \quad M_1 \quad M_2 \quad \dots \quad M_{117} \quad M_{118} \quad M_{119} \quad \dots$
 - L_D A R A \ldots A A R \ldots
- L_D is the language that we tried to construct D to decide.

Diagonalization and Halting

- A_{TM} is not Turing decidable (slide 3).
- A_{TM} is Turing recognizable (Nov. 3 lecture).
 - The set of Turing recognizable languages is strictly larger than the set of Turing decidable languages.
 - This is because a recognizer is allowed to loop: failure to halt means the recognizer rejects.
- $L_D = \{M \mid M \# M \in A_{TM} \text{ is not Turing recognizable (slide 5).}$
 - This is because the recognizer must halt whenever M loops when run with input M.
 - In fact, we could modify our machines to never use the *reject* state they could just loop to reject.
 - Then, recognizing L_D would mean determining that the machine will never halt.
 - Our argument that L_D is not Turing recognizable shows that this variant is not Turing recognizable.

• \overline{HALT} is not even Turing recognizable.

Turing Co-Recognizable Languages

- The class of Turing decidable languages is closed under complement.
- The class of Turing recognizable languages is not closed under complement.
 - We say that a language, L, is Turing co-recognizable iff the complement of L is Turing recognizable.
 - For example, the language

 $LOOPS = \{M \# w \mid \text{Turing machine } M \text{ loops when run with input } w \text{ is Turing}$ co-recognizable because it is the complement of HALT, a Turing recognizable language.

Relating Recognizability

- If a language is Turing recognizable and Turing co-recognizable, then it is Turing decidable.
 - Let L be a language that is both Turing recognizable and co-recognizable.
 - Because L is Turing recognizable, there is a Turing machine, M_L that for any $w \in L$ accepts w, and for any $w \notin L$ rejects or loops.
 - Because *L* is Turing co-recognizable, there is a Turing machine, M_{co-L} that for any $w \notin L$ rejects *w*, and for any $w \in L$ accepts or loops.
 - Now, we build a new TM, N that has two tapes, one for M_L and one for M_{co-L} . Each step of L takes a step for each of M_L and M_{co-L} . If either M_L or M_{co-L} accepts N accepts. Likewiese, if either rejects, N rejects. N is guaranteed to halt.
 - N is a TM that decides L.
 - $\therefore L$ is Turing decidable.

Why Allow Loopy Machines?

Couldn't we just insist that we'll only consider TM's that halt on all inputs (i.e. deciders)?

Problem 1:

- We could do this, and our diagonalization would still work.
- The obvious way to construct a TM for the diagonal (slide 3) produces a TM that loops. Language L_D remains undecidable.
- Problem 2: How do we know if a TM is a decider?
 - This is the question of whether or not a TM halts on all inputs, not just on one, specific input.
 - We say that a TM is total iff it halts on all inputs, and we write

 $TOTAL = \{M \mid M \text{ is a TM that halts on all inputs}\}$

- The language TOTAL is neither Turing recognizable nor co-recognizable.
- Thus, deciding whether or not a TM is a decider is even harder than the halting problem.

Reading List:

- Today: Sipser, 4.2 (midterm 2 cutoff)
- Nov. 8: Sipser, 5.1
- Nov. 10: Sipser, 5.1 (cont.)
- Nov. 13: Remembrance Day (no lecture)
- Nov. 15: Midterm 2
- Nov. 17: Sipser, 5.2
- Nov. 20: Sipser, 5.3