The Halting Problem for Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2006/07

The Undecidability of $A_{T M}$

- Diagonalizing Turing Machines
- Turing Recongizable > Turing Decidable
- Turing Unrecognizable Languages
- How do we know if M is a decider?
- The Halting Problem
- Turing Unrecognizable Languages

Trying to Decide $A_{T M}$

$A_{T M}=\{M \# w \mid$ Turing machine M accepts string $w\}$

- $A_{T M}$ is Turing recognizable:

We constructed a Turing Machine, U that recognizes $A_{T M}$ in the November 3 lecture.

- U was not a decider - it would loop on input $M \# w$ if M loops on input w.
- Can we make a Turing machine that decides $A_{T M}$?

This machine must halt (either accept or reject) for all possible inputs.

- Assume that E is a TM that decides $A_{T M}$.

We'll show that this leads to a contradiction on the next few slides.

$A_{T M}$ Is Undecidable

$A_{T M}=\{M \# w \mid M$ describes a TM that accepts string $w\}$
Let D be a Turing machine that does not have \# in its input alphabet. On input w, D does the following:

- Appends $\# w$ onto its input tape to produce $w \# w$.
- Runs E (the decider for $A_{T M}$ as a "subroutine".
- If E accepts $w \# w$, D rejects.
- If E rejects $w \# w$, D accept.s.

Now, run D with its own description as its input:

- If E says that D accepts when run with D as input, then D rejects when run with D as input.
- If E says that D rejects when run with D as input, then D accepts when run with D as input.
- Either way, we have a contradiction.
$\therefore E$ cannot exist.
- There is no TM that decides $A_{T M}$.
- $A_{T M}$ is not Turing decidable.

Why is this Diagonalization?

The set of all Turing machines is countable:

- Turing Machines can be described by strings.
- In the Nov. 3 lecture we described TMs using strings over the alphabet

$$
\Sigma_{T M}=\{0,1,(,, r)\} .
$$

- Not all strings are valid TM descriptions. Thus, $|T M| \leq\left|\Sigma_{T M}^{*}\right|=|\mathbb{N}|$.
- For every $k \geq 3$ there is a valid TM with k states. Thus $|T M| \geq|\mathbb{N}|$.
- We conclude that $|T M|=|\mathbb{N}|$.
- The set of all languages is uncountable. The set of all languages has size $2^{\left|\Sigma^{*}\right|}=2^{\mid \mathbb{N}}$.
- There are more languages than there are Turing machines.
\therefore There are languages that are neither Turing decidable nor recognizable.

Why is this Diagonalization?

The set of all Turing machines is countable:

- The set of all languages is uncountable.

The set of all languages has size $2^{\left|\Sigma^{*}\right|}=2^{\mid \mathbb{N}}$. For example, with $\Sigma=\{0,1\}$ we have:

	ϵ	0	1	00	01	10	11	000	\ldots
L_{0}	R	\ldots							
L_{1}	A	R	\ldots						
L_{2}	R	A	R	R	R	R	R	R	\ldots
L_{3}	A	A	R	R	R	R	R	R	\ldots
L_{4}	R	R	A	R	R	R	R	R	\ldots
\vdots	\ddots								

There are more languages than there are Turing machines.
\therefore There are languages that are neither Turing decidable nor recognizable.

Constructing an Undecidable Languag

- Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j :

	M_{0}	M_{1}	M_{2}	\ldots	M_{117}	M_{118}	M_{119}	\ldots
M_{0}	∞	∞	∞	\ldots	∞	∞	∞	\ldots
M_{1}	A	A	A	\ldots	A	A	A	\ldots
M_{2}	R	R	R	\ldots	R	R	R	\ldots
\vdots								
M_{117}	A	∞	R	\ldots	R	R	A	\ldots
M_{118}	R	R	R	\ldots	∞	∞	∞	\ldots
M_{119}	R	A	∞	\ldots	R	A	A	\ldots
\vdots	\ddots							

- Let L_{D} be the language $\left\{M_{i} \mid\right.$ Turing machine M_{i} rejects input $\left.M_{i}\right\}$:

Constructing an Undecidable Languag

- Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j :

	M_{0}	M_{1}	M_{2}	\ldots	M_{117}	M_{118}	M_{119}	\ldots
M_{0}	\underline{R}	R	R	\ldots	R	R	R	\ldots
M_{1}	A	\underline{A}	A	\ldots	A	A	A	\ldots
M_{2}	R	R	\underline{R}	\ldots	R	R	R	\ldots
\vdots	\ddots							
M_{117}	A	∞	R	\ldots	\underline{R}	R	A	\ldots
M_{118}	R	R	R	\ldots	∞	$\underline{\infty}$	∞	\ldots
M_{119}	R	A	∞	\ldots	R	A	\underline{A}	\ldots
\vdots	\ddots							

- Let L_{D} be the language $\left\{M_{i} \mid\right.$ Turing machine M_{i} rejects input $\left.M_{i}\right\}$:

$$
\begin{array}{cccccccc}
& M_{0} & M_{1} & M_{2} & \ldots & M_{117} & M_{118} & M_{119} \\
L_{D} & A & R & A & \ldots & A & A & R
\end{array}
$$

Constructing an Undecidable Languag

- Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j :
- Let L_{D} be the language $\left\{M_{i} \mid\right.$ Turing machine M_{i} rejects input $\left.M_{i}\right\}$:

$$
\begin{array}{ccccccccc}
& M_{0} & M_{1} & M_{2} & \ldots & M_{117} & M_{118} & M_{119} & \ldots \\
L_{D} & A & R & A & \ldots & A & A & R & \ldots
\end{array}
$$

- L_{D} is the language that we tried to construct D to decide.

Diagonalization and Halting

$A_{T M}$ is not Turing decidable (slide 3).
$A_{T M}$ is Turing recognizable (Nov. 3 lecture).

- The set of Turing recognizable languages is strictly larger than the set of Turing decidable languages.
- This is because a recognizer is allowed to loop: failure to halt means the recognizer rejects.
- $L_{D}=\left\{M \mid M \# M \in A_{T M}\right.$ is not Turing recognizable (slide 5).
- This is because the recognizer must halt whenever M loops when run with input M.
- In fact, we could modify our machines to never use the reject state - they could just loop to reject.
- Then, recognizing L_{D} would mean determining that the machine will never halt.
- Our argument that L_{D} is not Turing recognizable shows that this variant is not Turing recognizable.
$\therefore H A L T=\{M \# w \mid$ Turing machine M halts when run with input $w\}$ is Turing recognizable but not Turing decidable.
- $\overline{H A L T}$ is not even Turing recognizable.

Turing Co-Recognizable Languages

- The class of Turing decidable languages is closed under complement.
- The class of Turing recognizable languages is not closed under complement.
- We say that a language, L, is Turing co-recognizable iff the complement of L is Turing recognizable.
- For example, the language
$L O O P S=\{M \# w \mid$ Turing machine M loops when run with input w is Turing co-recognizable because it is the complement of HALT, a Turing recognizable language.

Relating Recognizability

- If a language is Turing recognizable and Turing co-recognizable, then it is Turing decidable.
- Let L be a language that is both Turing recognizable and co-recognizable.
- Because L is Turing recognizable, there is a Turing machine, M_{L} that for any $w \in L$ accepts w, and for any $w \notin L$ rejects or loops.
- Because L is Turing co-recognizable, there is a Turing machine, $M_{c o-L}$ that for any $w \notin L$ rejects w, and for any $w \in L$ accepts or loops.
- Now, we build a new TM, N that has two tapes, one for M_{L} and one for $M_{c o-L}$. Each step of L takes a step for each of M_{L} and $M_{c o-L}$. If either M_{L} or $M_{c o-L}$ accepts N accepts. Likewiese, if either rejects, N rejects. N is guaranteed to halt.
- N is a TM that decides L.
$\therefore L$ is Turing decidable.

Why Allow Loopy Machines?

- Couldn't we just insist that we'll only consider TM's that halt on all inputs (i.e. deciders)?
- Problem 1:
- We could do this, and our diagonalization would still work.
- The obvious way to construct a TM for the diagonal (slide 3) produces a TM that loops. Language L_{D} remains undecidable.
- Problem 2: How do we know if a TM is a decider?
- This is the question of whether or not a TM halts on all inputs, not just on one, specific input.
- We say that a TM is total iff it halts on all inputs, and we write

$$
\text { TOTAL }=\{M \mid M \text { is a } T M \text { that halis on all inputs }\}
$$

- The language TOTAL is neither Turing recognizable nor co-recognizable.
- Thus, deciding whether or not a TM is a decider is even harder than the halting problem.

Reading List:

Today: Sipser, 4.2 (midterm 2 cutoff)
Nov. 8: Sipser, 5.1
Nov. 10: Sipser, 5.1 (cont.)
Nov. 13: Remembrance Day (no lecture)
Nov. 15: Midterm 2
Nov. 17: Sipser, 5.2
Nov. 20: Sipser, 5.3

