Univeral Turing Machines and Diagonalization

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Universal Turing Machines

- A Turing Machine that can be programmed to simulate any other Turing Machine.

Diagonalization

- A way to show compare the sizes of infinite sets.
- On Monday, we'll use it to give a formal proof that the Halting Problem is undecidable.

Some "Universal" Languages

- $A_{R}=\{D \# w \mid D$ describes a DFA that accepts string $w\}$
- This is the "universal" language for Regular Languages.
- We described a Turing Machine for A_{R} in the Nov. 1 lecture.
$A_{C F L}=\{G \# w \mid G$ describes a CFG that generates string $w\}$
- This is the "universal" language for Context-Free Languages.
- We described a Turing Machine for $A_{C F L}$ in the Nov. 1 lecture.
$A_{T M}=\{M \# w \mid M$ describes a TM that accepts string $w\}$
- This is the "universal" language for Turing Recognizable Languages.
- We'll described a Turing Machine for $A_{T M}$ now.

A Universal Turing Machine

$A_{T M}=\{M \# w \mid M$ describes a TM that accepts string $w\}$
We'll define a Turing Machine, U, that recognizes $A_{T M}$.
$\Sigma_{U}:\{0,1,(,),, \#\}$
$\Gamma_{U}: \Sigma \cup\{\square, \ldots\}$
w : The format for the input tape is described on the next slide.
Tapes: We'll use six tapes:
input: The input string, $M \# w$ is written here.
δ_{M} : A list of tuples representing the transition function of M is written here.
q_{M} : The current state of M is written here.
c_{M} : The current tape symbol of M is written here.
tape $_{M}$: The current tape contents for M.
scratch: A scratch tape.

Input Tape Format for U

$\left|Q_{M}\right|_{r}\left|\Sigma_{M}\right|,\left|\Gamma_{M}\right| \delta_{M} \# w$ where
$\left|Q_{M}\right|$: Binary representation of the number of states of M.
$\left|\Sigma_{M}\right|$: Binary representation of the number of symbols in the input alphabet of M.
$\left|\Gamma_{M}\right|$: Binary representation of the number of symbols in the tape alphabet of M.
δ_{M} : A list of tuples for the transition function for M. Each tuple has the form:
$\left(q, c, q^{\prime}, c^{\prime}, d\right)$ where $\delta_{M}(q, c)=\left(q^{\prime}, c^{\prime}, d\right)$. In other words, when M is in state q and reads c, it transitions to state q^{\prime}, writes a c^{\prime} on the tape and moves one square in direction $d, d \in\{0,1\}$, where 0 denotes a left move and 1 denotes a right move.
q_{0}, accept, and reject: we assume that these special states are represented by 0,1 , and 2 respectively.
w : The input string: binary numbers separated by commas. We assume that each symbol in Γ is encoded using the same number of bits, $\left\lceil\log _{2}|\Gamma|\right\rceil$.

Operation of $U(1 / 2)$

Make sure the input is valid:

Check that the tape has the form $B^{*}, B^{*}, B^{*} C^{*} \# B^{*}\left(, B^{*}\right)^{*}$ where

$$
\begin{aligned}
& B=\{0,1\} \\
& C=\left(B^{*}, B^{*}, B^{*}, B^{*}, B^{*}\right)
\end{aligned}
$$

Note: This format requirement is a regular language. U can check this by scanning the tape from left-to-right using its finite states to implement a DFA.

Read $\left|Q_{D}\right|,\left|\Sigma_{D}\right|$ and Γ_{D}.
Copy δ_{M} onto the δ_{M} tape.
Make sure that each tuple, $\left(q, c, q^{\prime}, c^{\prime}, d\right)$ for δ_{M} has $q, q^{\prime} \in 0 \ldots\left(\left|Q_{D}\right|-1\right)$, $c, c^{\prime} \in 0 \ldots\left(\left|\Gamma_{D}\right|-1\right), d, \in B$. Make sure all combinations for q and c are covered.

Copy w onto the tape $_{M}$ tape.
Make sure that each symbol for w is in Σ_{D}.

Operation of $U(2 / 2)$

- Simulate M.

```
q->0
while(q \not\in{1,2}) {
    c string in }\mp@subsup{B}{}{*}\mathrm{ under head on tape M
    scan }\mp@subsup{\delta}{M}{}\mathrm{ tape to find entry for ( }q,c)\mathrm{ ,
        let this be ( q, c, q}\mp@subsup{q}{}{\prime},\mp@subsup{c}{}{\prime},d
    copy q}\mp@subsup{q}{}{\prime}\mathrm{ onto the q tape.
    copy c' onto the tape M
    move head for tape M}\mathrm{ according to d.
}
if(q== 1) accept;
else reject.
```


Observations

- If M accepts w, then U accepts $M \# w$.
- If M rejects w, then U rejects $M \# w$.
- If M loops on w, then U loops on $M \# w$.
- $\therefore U$ recognizes $A_{T M}$.
- U is universal:
- One machine U works with any input $M \# w$. In other words, U can simulate any Turing machine, M.
- You can think of the M part of $M \# w$ as a program, and the w part as the input data for the program.
- U is a programmable machine. Rather than building a new TM for each problem, we just program U to simulate whatever TM we want.

The Halting Problem for Turing Machi

- From the previous slide, U loops on input $M \# w$ iff M loops on input w.
- We've shown that U recognizes $A_{T M}$, but it doesn't decide $A_{T M}$.
- Could we build some other machine, U^{\prime} that can determine when a machine M loops on its given input? If so, then U^{\prime} would decide $A_{T M}$.
- This would require solving the Halting Problem for Turing Machines.begin
- We gave an informal argument (see the Oct. 23 slides) that the Halting Problem for Java ${ }^{\text {TM }}$ programs is undecidable (by Java programs). On Monday (Nov. 6), we'll show that the Halting Problem for Turing Machines is undecidable.
- First, we'll look at "diagonalization", the main mathematical concept that we'll need for the proof.

Which Set is Bigger?

- Let X and Y be sets.
- Is $|X|>|Y|$?
- Solution by counting:
- Count each element in X. Let n_{X} be the number.
- Count each element in Y. Let n_{Y} be the number.
- If $n_{X}>n_{Y}$, then $|X|>|Y|$.

Which Set is Bigger?

- Let X and Y be sets.
- Is $|X|>|Y|$?
- Solution by counting:
- Count each element in X. Let n_{X} be the number.
- Count each element in Y. Let n_{Y} be the number.
- If $n_{X}>n_{Y}$, then $|X|>|Y|$.

Comparing by Pairing

$$
|X| \geq \mid
$$

- If there is an onto function, $f: X \rightarrow Y$, then $|X| \geq|Y|$.
- If there are onto functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$, then $|X| \geq|Y|$ and $|Y| \geq|X|$, Thus, $|X|=|Y|$.
- Note that if $f: X \rightarrow Y$ is one-to-one and onto, then f^{-1} exists and is one-to-one, and onto as well. Thus, if there is a one-to-one and onto function, $f: X \rightarrow Y$, then $|X|=|Y|$.

Even Integers vs. All Integers

- Let \mathbb{Z} be the set of all integers, and \mathbb{E} be the set of all even integers.
- Let $f: \mathbb{Z} \rightarrow \mathbb{E}$ be the function $f(x)=2 x$.
- f is one-to-one: If $f(x)=f(y)$, then $2 x=2 y$, and $x=y$.
- f is onto: If $y \in \mathbb{E}$, then $y / 2 \in \mathbb{Z}$, and $f(y / 2)=y$.
- $\therefore \mathbb{E}=\mathbb{Z}$.

In English, this says that the number of even integers is equal to the number of all integers!

- A similar argument shows that $|\mathbb{N}|=|\mathbb{Z}|$.

Naturals vs. Rationals

- Let \mathbb{Q}^{+}be the set of all strictly-positive rational numbers, and \mathbb{N}^{+} be the strictly-positive naturals.
- Let $f: \mathbb{Q}^{+} \rightarrow \mathbb{N}^{+}$with $f(x)=\lceil x\rceil$. Clearly, f is onto, thus $\left|\mathbb{Q}^{+}\right| \geq\left|\mathbb{N}^{+}\right|$- there are at least as many positive rational numbers as positive naturals.
- Let $g: \mathbb{Q}^{+} \rightarrow \mathbb{N}^{+}$with

$$
\begin{aligned}
& g(n)=\frac{x(n)+1-z n}{z(n)} \\
& x(n)=\left\lfloor\frac{1}{2}(\sqrt{8 n-7}+1)\right\rfloor \\
& y(n)=\frac{1}{2}\left(x(n)^{2}-x(n)\right) \\
& z(n)=n-y(n)
\end{aligned}
$$

For example:

Reading List:

Today: Sipser, 4.2
Nov. 6: Sipser, 4.2 (cont., midterm 2 cutoff)
Nov. 8: Sipser, 5.1
Nov. 10: Sipser, 5.1 (cont.)
Nov. 13: Remembrance Day (no lecture)
Nov. 15: Midterm 2
Nov. 17: Sipser, 5.2
Nov. 20: Sipser, 5.3

