Univeral Turing Machines and Diagonalization

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Universal Turing Machines

A Turing Machine that can be programmed to simulate any other Turing Machine.

Diagonalization

- A way to show compare the sizes of infinite sets.
- On Monday, we'll use it to give a formal proof that the Halting Problem is undecidable.

Some "Universal" Languages

- $A_R = \{ D \# w \mid D \text{ describes a DFA that accepts string } w \}$
 - This is the "universal" language for Regular Languages.
 - We described a Turing Machine for A_R in the Nov. 1 lecture.
- $A_{CFL} = \{G \# w \mid G \text{ describes a CFG that generates string } w\}$
 - This is the "universal" language for Context-Free Languages.
 - We described a Turing Machine for A_{CFL} in the Nov. 1 lecture.
- $A_{TM} = \{M \# w \mid M \text{ describes a TM that accepts string } w\}$
 - This is the "universal" language for Turing Recognizable Languages.
 - We'll described a Turing Machine for A_{TM} now.

A Universal Turing Machine

 $A_{TM} = \{M \# w \mid M \text{ describes a TM that accepts string } w\}$

We'll define a Turing Machine, U, that recognizes A_{TM} .

 $\Sigma_U : \{ {\rm 0}, {\rm 1}, (\,,\,,\,)\,, \# \}$

 $\Gamma_U: \Sigma \cup \{\Box, \ldots\}$

w: The format for the input tape is described on the next slide.

Tapes: We'll use six tapes:

input: The input string, M # w is written here.

 δ_M : A list of tuples representing the transition function of M is written here.

 q_M : The current state of M is written here.

 c_M : The current tape symbol of M is written here.

 $tape_M$: The current tape contents for M.

scratch: A scratch tape.

Input Tape Format for ${\cal U}$

$|Q_M|$, $|\Sigma_M|$, $|\Gamma_M|\delta_M \# w$ where

- $|Q_M|$: Binary representation of the number of states of M.
- $|\Sigma_M|$: Binary representation of the number of symbols in the input alphabet of M.
- $|\Gamma_M|$: Binary representation of the number of symbols in the tape alphabet of M.
- δ_M : A list of tuples for the transition function for M. Each tuple has the form: (q, c, q', c', d) where $\delta_M(q, c) = (q', c', d)$. In other words, when M is in state q and reads c, it transitions to state q', writes a c' on the tape and moves one square in direction $d, d \in \{0, 1\}$, where 0 denotes a left move and 1 denotes a right move.
- q_0 , accept, and reject: we assume that these special states are represented by 0, 1, and 2 respectively.
- *w*: The input string: binary numbers separated by commas. We assume that each symbol in Γ is encoded using the same number of bits, $\lceil \log_2 |\Gamma| \rceil$.

Operation of U (1/2)

Make sure the input is valid:

- Check that the tape has the form B^* , B^* , $B^*C^* #B^*(, B^*)^*$ where
 - $B = \{\mathbf{0}, \mathbf{1}\}$
 - C= (B^{\ast} , B^{\ast} , B^{\ast} , B^{\ast} , B^{\ast})

Note: This format requirement is a regular language. U can check this by scanning the tape from left-to-right using its finite states to implement a DFA.

- Read $|Q_D|$, $|\Sigma_D|$ and Γ_D .
- Copy δ_M onto the δ_M tape.

Make sure that each tuple, (q, c, q', c', d) for δ_M has $q, q' \in 0 \dots (|Q_D| - 1)$, $c, c' \in 0 \dots (|\Gamma_D| - 1), d, \in B$. Make sure all combinations for q and c are covered.

- Copy w onto the $tape_M$ tape.
- Make sure that each symbol for w is in Σ_D .

Operation of U (2/2)

• Simulate M.

```
\begin{array}{l} q \ \rightarrow \ 0 \\ \text{while}(q \ \not\in \ \{1,2\}) \ \{ \\ c \ \rightarrow \ \text{string in } B^* \ \text{under head on } tape_M. \\ \text{scan } \delta_M \ \text{tape to find entry for } (q,c), \\ \text{let this be } (q,c,q',c',d) \\ \text{copy } q' \ \text{onto the } q \ \text{tape.} \\ \text{copy } c' \ \text{onto the } tape_M \ \text{tape.} \\ \text{move head for } tape_M \ \text{according to } d. \\ \end{array} \right\} \\ \text{if}(q == 1) \ \text{accept}; \\ \text{else reject.} \end{array}
```

Observations

- If M accepts w, then U accepts M # w.
- If M rejects w, then U rejects M # w.
- If M loops on w, then U loops on M # w.
- $:: U \text{ recognizes } A_{TM}$.
- U is universal:
 - One machine U works with any input M # w. In other words, U can simulate any Turing machine, M.
 - You can think of the M part of M # w as a program, and the w part as the input data for the program.
 - U is a programmable machine. Rather than building a new TM for each problem, we just program U to simulate whatever TM we want.

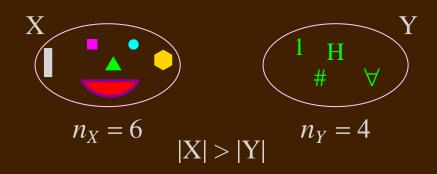
The Halting Problem for Turing Machi

- From the previous slide, U loops on input M # w iff M loops on input w.
- We've shown that U recognizes A_{TM} , but it doesn't decide A_{TM} .
- Could we build some other machine, U' that can determine when a machine M loops on its given input? If so, then U' would decide A_{TM}.
 - This would require solving the Halting Problem for Turing Machines.begin
 - We gave an informal argument (see the Oct. 23 slides) that the Halting Problem for JavaTM programs is undecidable (by Java programs). On Monday (Nov. 6), we'll show that the Halting Problem for Turing Machines is undecidable.
 - First, we'll look at "diagonalization", the main mathematical concept that we'll need for the proof.

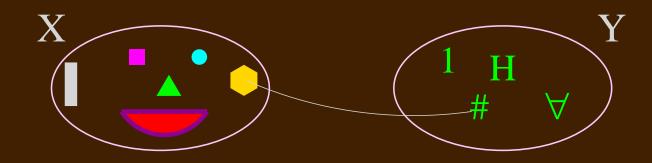
Which Set is Bigger?

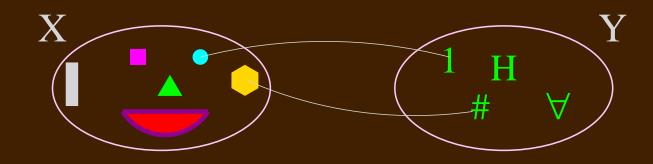
- Let X and Y be sets.
- $\bullet \ |X| > |Y|?$
- Solution by counting:
 - Count each element in X. Let n_X be the number.
 - Count each element in Y. Let n_Y be the number.
 - If $n_X > n_Y$, then |X| > |Y|.

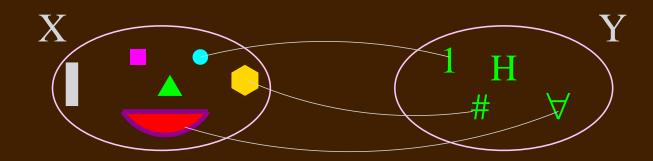
Which Set is Bigger?

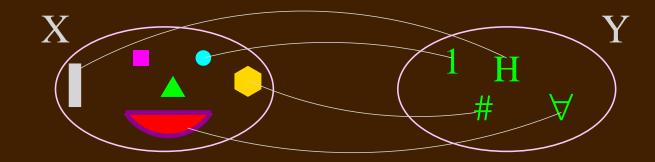


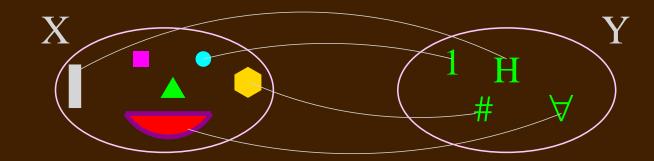
- Let X and Y be sets.
- Is |X| > |Y|?
- Solution by counting:
 - Count each element in X. Let n_X be the number.
 - Count each element in \overline{Y} . Let n_Y be the number.
 - If $n_X > n_Y$, then |X| > |Y|.











 $\left|X\right| \geq \left|Y\right|$

- If there is an onto function, $f: X \to Y$, then $|X| \ge |Y|$.
- If there are onto functions $f: X \to Y$ and $g: Y \to X$, then $|X| \ge |Y|$ and $|Y| \ge |X|$, Thus, |X| = |Y|.
- Note that if $f: X \to Y$ is one-to-one and onto, then f^{-1} exists and is one-to-one, and onto as well. Thus, if there is a one-to-one and onto function, $f: X \to Y$, then |X| = |Y|.

Even Integers vs. All Integers

Let \mathbb{Z} be the set of all integers, and \mathbb{E} be the set of all even integers.

- Let $f : \mathbb{Z} \to \mathbb{E}$ be the function f(x) = 2x.
- f is one-to-one: If f(x) = f(y), then 2x = 2y, and x = y.
- f is onto: If $y \in \mathbb{E}$, then $y/2 \in \mathbb{Z}$, and f(y/2) = y.
- \therefore $\mathbb{E} = \mathbb{Z}$.

In English, this says that the number of even integers is equal to the number of all integers!

• A similar argument shows that $|\mathbb{N}| = |\mathbb{Z}|$.

Naturals vs. Rationals

- Let Q⁺ be the set of all strictly-positive rational numbers, and N⁺ be the strictly-positive naturals.
- Let $f : \mathbb{Q}^+ \to \mathbb{N}^+$ with $f(x) = \lceil x \rceil$. Clearly, f is onto, thus $|\mathbb{Q}^+| \ge |\mathbb{N}^+|$ there are at least as many positive rational numbers as positive naturals.

• Let
$$g: \mathbb{Q}^+ \to \mathbb{N}^+$$
 with

$$g(n) = \frac{x(n)+1-zn}{z(n)}$$

$$x(n) = \left\lfloor \frac{1}{2}(\sqrt{8n-7}+1) \right\rfloor$$

$$y(n) = \frac{1}{2}(x(n)^2 - x(n))$$

$$z(n) = n - y(n)$$

For example:

n	1	2	3	4	5	6	7	8	9	10	11	•••	
x(n)	1	2	2	3	3	3	4	4 (CpS€ 4	21 - 43	Novemt	ber . 2006	– p.12/ ? '

Reading List:

- Today: Sipser, 4.2
- Nov. 6: Sipser, 4.2 (cont., midterm 2 cutoff)
- Nov. 8: Sipser, 5.1
- Nov. 10: Sipser, 5.1 (cont.)
- Nov. 13: Remembrance Day (no lecture)
- Nov. 15: Midterm 2
- Nov. 17: Sipser, 5.2
- Nov. 20: Sipser, 5.3