
Universal Turing Machines
and Diagonalization

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Universal Turing Machines

A Turing Machine that can be programmed to simulate any other Turing Machine.

Diagonalization

A way to show compare the sizes of infinite sets.

On Monday, we’ll use it to give a formal proof that the Halting Problem is
undecidable.

CpSc 421 — 3 November 2006 – p.1/16

Some “Universal” Languages
AR = {D#w | D describes a DFA that accepts string w}

This is the “universal” language for Regular Languages.

We described a Turing Machine for AR in the Nov. 1 lecture.

ACFL = {G#w | G describes a CFG that generates string w}

This is the “universal” language for Context-Free Languages.

We described a Turing Machine for ACFL in the Nov. 1 lecture.

ATM = {M#w |M describes a TM that accepts string w}

This is the “universal” language for Turing Recognizable Languages.

We’ll described a Turing Machine for ATM now.

CpSc 421 — 3 November 2006 – p.2/16

A Universal Turing Machine
ATM = {M#w | M describes a TM that accepts string w}

We’ll define a Turing Machine, U , that recognizes ATM .

ΣU : {0,1,(,,,),#}

ΓU : Σ ∪ {�, . . .}

w: The format for the input tape is described on the next slide.

Tapes: We’ll use six tapes:

input = The input string, M#w is written here.

δM = A list of tuples representing the transition function of M is written here.

qM = The current state of M is written here.

cM = The current tape symbol of M is written here.

tapeM = The current tape contents for M .

scratch = A scratch tape.

CpSc 421 — 3 November 2006 – p.3/16

Input Tape Format for U

|QM |,|ΣM |,|ΓM |δM#w where
|QM |: Binary representation of the number of states of M .

|ΣM |: Binary representation of the number of symbols in the input alphabet of M .

|ΓM |: Binary representation of the number of symbols in the tape alphabet of M .

δM : A list of tuples for the transition function for M . Each tuple has the form:
(q, c, q′, c′, d) where δM (q, c) = (q′, c′, d). In other words, when M is in state q and
reads c, it transitions to state q′, writes a c′ on the tape and moves one square in
direction d, d ∈ {0,1}, where 0 denotes a left move and 1 denotes a right move.

q0, accept , and reject : we assume that these special states are represented by 0, 1, and
2 respectively.

w: The input string: binary numbers separated by commas. We assume that each
symbol in Γ is encoded using the same number of bits, ⌈log2 |Γ|⌉.

CpSc 421 — 3 November 2006 – p.4/16

Operation of U (1/2)
Make sure the input is valid:

Check that the tape has the form B∗,B∗,B∗C∗#B∗(,B∗)∗ where

B = {0,1}
C = (B∗,B∗,B∗,B∗,B∗)

Note: This format requirement is a regular language. U can check this by
scanning the tape from left-to-right using its finite states to implement a DFA.

Read |QD|, |ΣD| and |ΓD|.

Copy δM onto the δM tape.

Make sure that each tuple, (q, c, q′, c′, d) for δM has q, q′ ∈ 0 . . . (|QD| − 1),
c, c′ ∈ 0 . . . (|ΓD| − 1), d,∈ B. Make sure all combinations for q and c are covered.

Copy w onto the tapeM tape —
write the binary string for M ’s blank if w = ǫ.

Make sure that each symbol for w is in ΣD .

CpSc 421 — 3 November 2006 – p.5/16

Operation of U (2/2)
Simulate M .

q ← 0

while(q 6∈ {1, 2}) {

c ← string in B∗ under head on tapeM.
(if there is a blank under the head, write a comma

and the binary string for M’s blank)
scan δM tape to find entry for (q, c),

let this be (q, c, q′, c′, d)

copy q′ onto the q tape.

copy c′ onto the tapeM tape.
move head for tapeM according to d.

}

if(q == 1) accept;

else reject.

CpSc 421 — 3 November 2006 – p.6/16

Observations
If M accepts w, then U accepts M#w.

If M rejects w, then U rejects M#w.

If M loops on w, then U loops on M#w.

∴ U recognizes ATM .

U is universal:
One machine U works with any input M#w.
In other words, U can simulate any Turing machine, M .

You can think of the M part of M#w as a program, and the w part as the input
data for the program.

U is a programmable machine. Rather than building a new TM for each

problem, we just program U to simulate whatever TM we want.

CpSc 421 — 3 November 2006 – p.7/16

Halting for Turing Machines
From the previous slide, U loops on input M#w iff M loops on
input w.

We’ve shown that U recognizes ATM , but it doesn’t decide ATM .

Could we build some other machine, U ′ that can determine when a
machine M loops on its given input? If so, then U ′ would decide
ATM .

This would require solving the Halting Problem for Turing Machines.begin

We gave an informal argument (see the Oct. 23 slides) that the Halting Problem
for JavaTM programs is undecidable (by Java programs). On Monday (Nov. 6),
we’ll show that the Halting Problem for Turing Machines is undecidable.

First, we’ll look at “diagonalization”, the main mathematical concept that we’ll

need for the proof.

CpSc 421 — 3 November 2006 – p.8/16

Which Set is Bigger?

1 H
∀

|X| > |Y|

X

n

Y

X = 6 nY = 4

Let X and Y be sets.

Is |X | > |Y |?

Solution by counting:
Count each element in X. Let nX be the number.

Count each element in Y . Let nY be the number.

If nX > nY , then |X| > |Y |.

CpSc 421 — 3 November 2006 – p.9/16

Comparing by Pairing
X

|X| > |Y|

1
Y

H
∀

If there is an onto function, f : X → Y , then |X | ≥ |Y |.

If there are onto functions f : X → Y and g : Y → X , then
|X | ≥ |Y | and |Y | ≥ |X |, Thus, |X | = |Y |.

Note that if f : X → Y is one-to-one and onto, then f−1 exists and
is one-to-one, and onto as well. Thus, if there is a one-to-one and
onto function, f : X → Y , then |X | = |Y |.

If there is no onto function g : Y → X , then |X | > |Y |.

CpSc 421 — 3 November 2006 – p.10/16

Even Integers vs. All Integers
Let Z be the set of all integers, and E be the set of all even integers.

Let f : Z → E be the function f(x) = 2x.

f is one-to-one: If f(x) = f(y), then 2x = 2y, and x = y.

f is onto: If y ∈ E, then y/2 ∈ Z, and f(y/2) = y.

∴: E = Z.

In English, this says that the number of even integers is equal to the number of

all integers!

A similar argument shows that |N| = |Z|.

CpSc 421 — 3 November 2006 – p.11/16

Naturals vs. Rationals (1/2)
Let Q+ be the set of all strictly-positive rational numbers, and N+ be the
strictly-positive naturals.

Let f : Q+ → N+ with f(x) = ⌈x⌉. Clearly, f is onto, thus |Q+| ≥ |N+| — there are
at least as many positive rational numbers as positive naturals.

Let g : Q+ → N+ with g(n) =
x(n)+1−zn

z(n)

x(n) =
¨

1
2
(
√

8n − 7 + 1)
˝

y(n) = 1
2
(x(n)2 − x(n))

z(n) = n − y(n)

For example:

n 1 2 3 4 5 6 7 8 9 10 11 . . .

x(n) 1 2 2 3 3 3 4 4 4 4 5 . . .

y(n) 0 1 1 3 3 3 6 6 6 6 10 . . .

z(n) 1 1 2 1 2 3 1 2 3 4 1 . . .

g(n) 1
1

2
1

1
2

3
1

2
2

1
3

4
1

3
2

2
3

1
4

5
1

. . .

CpSc 421 — 3 November 2006 – p.12/16

Naturals vs. Rationals (2/2)
Visualizing g(n).

1

1

1

2

1

3

1

4

1

5
. . .

2

1

2

2

2

3

2

4
. . .

3

1

3

2

3

3
. . .

4

1

4

2
. . .

5

1
. . .

... . . .

CpSc 421 — 3 November 2006 – p.13/16

Naturals vs. the Reals
Let V = [0, 1) be a half-open, interval of real numbers.

We’ll show that |V | > |N|. Clearly |V | ≤ |R| (in fact, |V | = |R|).
Thus, this will show that |R| > |N|.

The proof is by contradiction.
Assume that |R| ≤ |N|.
This means that there exists an onto function g : N → R.

On the next slide, we’ll show that this leads to a contradiction. The argument
we use is called a diagonalization argument.

g is not onto, a contradiction. This shows that g cannot exist.

∴, |[0, 1)| > |N|. which implies |R| > |N|.

CpSc 421 — 3 November 2006 – p.14/16

Diagonalization
Let digit(x, k) denote the kth digit after the decimal point of x. For example,

digit(0.707106, 4) = 1, and digit(
q

1
2
, 40) = 8.

Let y =
∞

X

m=1

((digit(g(m), m) mod 8) + 1) × 10−m.

This choice of digits has two handy properties:

For all m, digit(y(m), m) 6= digit(g(m), m).

All digits are in {1, 2, 3, 4, 5, 6, 7, 8}. This avoids having to deal with problematic
valus for y such as 0.19999999999 . . . which is equal to 0.2, or
0.999999999999 . . . which is not in [0, 1).

y ∈ [0, 1), and ∀m. y 6= g(m).

g is not onto, a contradiction. This shows that g cannot exist.

CpSc 421 — 3 November 2006 – p.15/16

Diagonalization (2/2)
Consider the following example of a possible function for g:

m g(m)

0 0.950129285147175

1 0.231138513574288

2 0.606842583541787

3 0.485782468709300

4 0.891288966148902

5 0.762096833027395

6 0.456467465168341

7 0.018503643248224

8 0.821407164295253

9 0.444703364353194

...
...

Then y constructed as described on the previous slide will be 0.2378175554

Note that for each m, the mth digit of y is different than the mth digit of g(m). Thus,

y is guaranteed not to appear on the list.
CpSc 421 — 3 November 2006 – p.16/16

Reading List:
Today: Sipser, 4.2

Nov. 6: Sipser, 4.2 (cont., midterm 2 cutoff)

Nov. 8: Sipser, 5.1

Nov. 10: Sipser, 5.1 (cont.)

Nov. 13: Remembrance Day (no lecture)

Nov. 15: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3

CpSc 421 — 3 November 2006 – p.17/16

	Some ``Universal'' Languages
	A Universal Turing Machine
	Input Tape Format for U
	Operation of U (1/2)
	Operation of U (2/2)
	Observations
	Halting for Turing Machines
	Which Set is Bigger?
	Comparing by Pairing
	Even Integers vs. All Integers
	Naturals vs. Rationals (1/2)
	Naturals vs. Rationals (2/2)
	Naturals vs. the Reals
	Diagonalization
	Diagonalization (2/2)
	Reading List:

