
Decidable Problems
Mark Greenstreet, CpSc 421, Term 1, 2006/07

Some Relevant Hilbert Problems

Is mathematics complete?

Is mathematics consistent?

Is mathematics decidable?

Decision Problems for Regular Languages and CFLs

Some more decision problems

1 November 2006 – p.1/14

Hilbert and the Formalist Program
All of mathematics can be axiomatized (e.g. Peano arithmetic,
Zermelo-Fraenkel set theory).

The notion of a proof can be formalized.
If C is a claim, then a proof, P , for C is a sequence of statements in the logic.

In these formal systems, checking that P is a valid proof for C can be done

completely mechanically, much like a compiler checking a program for syntax or

type-checking errors.

This led Hilbert to propose a grand vision for mathematics.

1 November 2006 – p.2/14

The Hilbert Questions
Twenty-three questions that Hilbert raised in a lecture in 1900 as
being among the most important questions for mathematicians in
the 20th century.

We’ll focus on:
Is mathematics complete?
I.e. Can any true statement be proven?

Is mathematics consistent?
I.e. Is it impossible to prove a contradiction?

Is mathematics decidable?

I.e. Given any claim, is there a procedure by which we can derive a proof for

the claim or refute it.

The last one, like many of Hilbert’s questions, asked for a
procedure. This goes back to “What is an algorithm?”

1 November 2006 – p.3/14

What is an Algorithm?
Prior to Church & Turing: a description of how to compute something.

This seems to have been Hilbert’s idea in, for example, asking for a procedure
with a finite number of steps to determing whether or not a polynomial has an
integral root.

Gauss and the FFT.

With Church and Turing, we can be much more precise:

We can say what operations are allowed.

We can reason about the time and memory required.

We can show that there are problems for which no algorithm exists.

This led to showing the impossibility of solving several of Hilbert’s problems, and

with it, the impossibility of completing the formalist program.

1 November 2006 – p.4/14

Decidable Problems Regular Languages
Decidable problems for Regular Languages

Does DFA M accept string w?

Is the language of M empty?

Does NFA M accept string w?

Does regular expression E match string w?

Do two DFA/NFA/REs generate the same language?

Just about any reasonable question you can ask about a DFA, NFA or RE.

Decidable problems for CFLs
Does CFG G generate string w?

Does CFG G generate the empty language?

1 November 2006 – p.5/14

Does DFA D Accept w? (Java 1/2)
Let D = (Q, Σ, δ, q0, F).

Describing the DFA:

Q: we’ll just use the integers, 0 . . . (|Q| − 1).

Σ: likewise, we’ll juse the integers, 0 . . . (|Σ| − 1).

δ: We’ll use an array:

int[][] delta = new int[|Q|][|Σ|] = { ...};

We initialize delta so that delta[q][c] = δ(q, c).

q0: We assign integers to states in Q so that 0 corresponds to q0.
F : We’ll use an array:

boolean[] F = new boolean[|Q|] = { ...};

We initialize accept so that F[q] is true iff q ∈ F .

1 November 2006 – p.6/14

Does DFA D Accept w? (Java 2/2)
boolean accept(int[] w){
int q = 0; // current state
for(int i=0; i < w.length; i++) // each symbol in

q = delta[q][w[i]]; // update state
return(F[q]); // accept iff we reached an accepting state

}

1 November 2006 – p.7/14

Does DFA D Accept w? (TM 1/3)
Σ = {0,1,(,,,),#}: use a binary encoding of M .

Γ = Σ ∪ {�, . . .}

Tapes:

QD : The number of states of M .

ΣD : The number of symbols in M ’s alphabet.

δD : A list of tuples: (q , c , q′) to indicate δ(q, c) = q′.

F : A list of accepting states – binary numbers separated by commas.

w: The input string: binary numbers separated by commas.

q: The current state.

c: The current input symbol.

scratch : A tape for scratch work.

1 November 2006 – p.8/14

Does DFA D Accept w? (TM 2/3)

20 a,b,c

a

ca

b

b,c 1

The Input Tapes:

QD = 11, three states

ΣD = 11, three input symbols: a→ 00, b→ 01, c→ 10

δD = (00,00,01),(00,01,00),(00,10,00),

(01,00,01),(01,01,00),(01,10,10),

(10,00,10),(10,1,10),(10,10,10), transitions

F = 00, the accept state

w = 00,01,00,00,01,10, sample input

Or, we could combine it all into one tape:
11,11,(00,00,01),(00,01,00),(00,10,00),. . .
(10,10,10)00#00,01,00,00,01,10�ω

1 November 2006 – p.9/14

Does DFA D accept w? (TM 3/3)
Check that tapes QD , ΣD , δD , and F describe a valid DFA:

Check that tape w describes a valid input string.

Process w:

∴ The language {D#w | D is a DFA that accepts w} is Turing decidable.

1 November 2006 – p.10/14

Does DFA D accept w? (TM 3/3)
Check that tapes QD , ΣD , δD , and F describe a valid DFA:

Make sure that δD has an entry for every state and input symbol (use the
scratch tape as a counter). Make sure that the destination state is in
0 . . . (|QD| − 1).

Make sure that every state in F is a valid state.

Check that tape w describes a valid input string.

Process w:

∴ The language {D#w | D is a DFA that accepts w} is Turing decidable.

1 November 2006 – p.10/14

Does DFA D accept w? (TM 3/3)
Check that tapes QD , ΣD , δD , and F describe a valid DFA:

Check that tape w describes a valid input string.

Process w:

q ← 0;

while more symbols in w {

c ← the next symbol of w

-- this moves the head for the w tape

-- one symbol of ΣD to the right.

scan the δ tape to find a match for q and c.

update q ← q′.

}

scan the F tape to find a match for q.

If a match is found, accept.

Otherwise, reject.

∴ The language {D#w | D is a DFA that accepts w} is Turing decidable.

1 November 2006 – p.10/14

Does CFG G generate w?
Make a NTM that guesses the derivation of w and verifies it?

How long should the derivation be?
Let G′ be a CNF grammar for G.

If w = ǫ, then check to see if S0 → ǫ.

Otherwise, the derivation for w in G′ has 2|w| − 1 steps.

Note that the procedure for converting an arbitrary grammar to CNF works is an

algorithm we can execute on a TM.

∴ The language {G#w | G is a CFG that generates w} is Turing
decidable.

1 November 2006 – p.11/14

Hilbert’s 10
th Problem

Let P be a multivariable polynomial?

Does P have a root with integer values for all of the variables?

Solution:
Make a NTM that first guesses integer values for the variables.

Next, the NTM verifies that they are a root.

If they are a root, then the NTM accepts.

Otherwise the NTM rejects.

No upper bound on the size of the values for the variables.

We have reduced Hilbert’s 10th Problem to the Halting Problem.

1 November 2006 – p.12/14

Hilbert’s 10
th Problem

Let P be a multivariable polynomial?

Does P have a root with integer values for all of the variables?

Solution:
Make a NTM that first guesses integer values for the variables.

. . .

No upper bound on the size of the values for the variables.
The NTM may not terminate, or . . .

It may just be writing a guessing big number for one of the variables.

We can’t know which is the case without solving the Halting Problem.

∴ Hilbert’s 10th problem is Turing recognizable.

We have reduced Hilbert’s 10th Problem to the Halting Problem.

1 November 2006 – p.12/14

Hilbert’s 10
th Problem

Let P be a multivariable polynomial?

Does P have a root with integer values for all of the variables?

Solution:
Make a NTM that first guesses integer values for the variables.

. . .

No upper bound on the size of the values for the variables.

We have reduced Hilbert’s 10th Problem to the Halting Problem.
If we could solve the Halting Problem, we could solve Hilbert’s 10th problem.

In 1970, Yuri Matijasevic showed that if we could solve Hilbert’s 10th problem
then we could solve the Halting problem.

∴ Hilbert’s 10th problem is not Turing decidable.

Thus, we say that the Halting Problem and Hilbert’s 10th problem are
equivalent.

We’ll cover this in more detail when we get to Sipser Chapter 5.

1 November 2006 – p.12/14

A Caution
Let ADD = {x#y#z | binary(x) + binary(y) = binary(z)}

Consider:

if(z == x+y) accept; else while(true);

This program terminates iff z = x + y.
We have shown that if we can solve the Halting Problem, then we could solve
the addition problem.

This is true, but not very interesting.

We can solve the addition problem whether or not we can solve the Halting

Problem.

1 November 2006 – p.13/14

The Odd-Perfect-Number Conjecture
A perfect number is a number that is equal to the sum of its positive, integer factors
(other than itself).

Example: 6 = 1 + 2 + 3.

Example: 28 = 1 + 2 + 4 + 7 + 14.

Conjecture: All perfect numbers are even.

Consider:

i = 1;

while(true) {

if(perfect(i)) accept;

else i = i+1; }

This program terminates iff the Odd-Perfect-Number Conjecture is false.

We have reduce proving the Odd-Perfect-Number Conjecture to solving the
Not-Halting Problem.

We can’t possibly reduce the Non-Halting Problem to the Odd-Perfect-Number

Conjecture. Why?

1 November 2006 – p.14/14

Reading List:
Today: Sipser, 4.1

Nov. 3: Sipser, 4.2

Nov. 6: Sipser, 4.2 (cont., midterm 2 cutoff)

Nov. 8: Sipser, 5.1

Nov. 10: Sipser, 5.1 (cont.)

Nov. 13: Remembrance Day (no lecture)

Nov. 15: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3

1 November 2006 – p.15/14

	Hilbert and the Formalist Program
	The Hilbert Questions
	What is an Algorithm?
	Decidable Problems Regular Languages and CFLs
	Does DFA D Accept w? (Java 1/2)
	Does DFA D Accept w? (Java 2/2)
	Does DFA D Accept w? (TM 1/3)
	Does DFA D Accept w? (TM 2/3)
	Does DFA D accept w? (TM 3/3)
	Does CFG G generate w?
	Hilbert's 10^{th} Problem
	A Caution
	The Odd-Perfect-Number Conjecture
	Reading List:

