Decidable Problems

Mark Greenstreet, CpSc 421, Term 1, 2006/07
- Some Relevant Hilbert Problems
- Is mathematics complete?
- Is mathematics consistent?
- Is mathematics decidable?
- Decision Problems for Regular Languages and CFLs
- Some more decision problems

Hilbert and the Formalist Program

- All of mathematics can be axiomatized (e.g. Peano arithmetic, Zermelo-Fraenkel set theory).
- The notion of a proof can be formalized.
- If C is a claim, then a proof, P, for C is a sequence of statements in the logic.
- In these formal systems, checking that P is a valid proof for C can be done completely mechanically, much like a compiler checking a program for syntax or type-checking errors.
- This led Hilbert to propose a grand vision for mathematics.

The Hilbert Questions

- Twenty-three questions that Hilbert raised in a lecture in 1900 as being among the most important questions for mathematicians in the $20^{t h}$ century.
- We'll focus on:
- Is mathematics complete?
I.e. Can any true statement be proven?
- Is mathematics consistent?
I.e. Is it impossible to prove a contradiction?
- Is mathematics decidable?
I.e. Given any claim, is there a procedure by which we can derive a proof for the claim or refute it.
- The last one, like many of Hilbert's questions, asked for a procedure. This goes back to "What is an algorithm?"

What is an Algorithm?

- Prior to Church \& Turing: a description of how to compute something.
- This seems to have been Hilbert's idea in, for example, asking for a procedure with a finite number of steps to determing whether or not a polynomial has an integral root.
- Gauss and the FFT.
- With Church and Turing, we can be much more precise:
- We can say what operations are allowed.
- We can reason about the time and memory required.
- We can show that there are problems for which no algorithm exists.
- This led to showing the impossibility of solving several of Hilbert's problems, and with it, the impossibility of completing the formalist program.

Decidable Problems Regular Language

- Decidable problems for Regular Languages
- Does DFA M accept string w ?
- Is the language of M empty?
- Does NFA M accept string w ?
- Does regular expression E match string w ?
- Do two DFA/NFA/REs generate the same language?
- Just about any reasonable question you can ask about a DFA, NFA or RE.
- Decidable problems for CFLs
- Does CFG G generate string w ?
- Does CFG G generate the empty language?

Does DFA D Accept w ? (Java 1/2)

- Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
- Describing the DFA:
- Q : we'll just use the integers, $0 \ldots(|Q|-1)$.
- Σ : likewise, we'll juse the integers, $0 \ldots(|\Sigma|-1)$.
- δ : We'll use an array:
int[][] delta = new int $[|Q|][|\Sigma|]=\{\ldots\} ;$
We initialize delta so that delta [q] [c] $=\delta(q, c)$.
- q_{0} : We assign integers to states in Q so that 0 corresponds to q_{0}.
- F : We'll use an array:
boolean[] $F=$ new boolean $[|Q|]=\{\ldots\} ;$
We initialize accept so that $\mathrm{F}[\mathrm{q}]$ is true iff $\mathrm{q} \in F$.

Does DFA D Accept w ? (Java 2/2)

```
boolean accept(int[] w){
    int q = 0; // current state
    for(int i=0; i < w.length; i++) // each symbol
        q = delta[q][w[i]]; // update state
    return(F[q]); // accept iff we reached an accepting state
}
```


Does DFA D Accept w ? (TM 1/3)

$\Sigma=\{0,1,(,,),, \#\}$: use a binary encoding of M.
$\Gamma=\Sigma \cup\{\square, \ldots\}$
Tapes:
Q_{D} : The number of states of M.
Σ_{D} : The number of symbols in M 's alphabet.
δ_{D} : A list of tuples: $\left(q, c, q^{\prime}\right)$ to indicate $\delta(q, c)=q^{\prime}$.
F : A list of accepting states - binary numbers separated by commas.
w : The input string: binary numbers separated by commas.
q : The current state.
c : The current input symbol.
scratch: A tape for scratch work.

Does DFA D Accept w ? (TM 2/3)

The Input Tapes:

$$
\begin{array}{rlr}
Q_{D}= & 11, & \text { three states } \\
\Sigma_{D}= & 11, \text { three input symbols: } \mathrm{a} \rightarrow 00, \mathrm{~b} \rightarrow 01, \mathrm{c} \rightarrow 10 \\
\delta_{D}= & (00,00,01),(00,01,00),(00,10,00), \\
& (01,00,01),(01,01,00),(01,10,10), \\
& (10,00,10),(10,1,10),(10,10,10), \quad \text { transitions } \\
F= & 00, & \text { the accept state } \\
w= & 00,01,00,00,01,10, & \text { sample input }
\end{array}
$$

Or, we could combine it all into one tape:
$11,11,(00,00,01),(00,01,00),(00,10,00), \ldots$
$(10,10,10) 00 \# 00,01,00,00,01,10 \square^{\omega}$

1 November 2006 - p.9/14

Does DFA D accept w ? (TM 3/3)

- Check that tapes $Q_{D}, \Sigma_{D}, \delta_{D}$, and F describe a valid DFA:
- Make sure that δ_{D} has an entry for every state and input symbol (use the scratch tape as a counter). Make sure that the destination state is in $0 \ldots\left(\left|Q_{D}\right|-1\right)$.
- Make sure that every state in F is a valid state.
- Check that tape w describes a valid input string.
- Process w :

```
q}\leftarrow0
while more symbols in w {
    c}\leftarrow\mathrm{ the next symbol of w
            -- this moves the head for the w tape
            -- one symbol of }\mp@subsup{\Sigma}{D}{}\mathrm{ to the right.
    scan the \delta tape to find a match for }q\mathrm{ and c.
    update q}\leftarrow\mp@subsup{q}{}{\prime}
}
scan the F tape to find a match for q.
If a match is found, accept.
Otherwise, reject.
```

\therefore The language $\{D \# w \mid D$ is a DFA that accepts $w\}$ is Turing decidabavere. ${ }^{\text {O }}$ 2006-p.10/14

Does DFA D accept w ? (TM 3/3)

- Check that tapes $Q_{D}, \Sigma_{D}, \delta_{D}$, and F describe a valid DFA:
- Make sure that δ_{D} has an entry for every state and input symbol (use the scratch tape as a counter). Make sure that the destination state is in $0 \ldots\left(\left|Q_{D}\right|-1\right)$.
- Make sure that every state in F is a valid state.
- Check that tape w describes a valid input string.
- Process w :

```
q}\leftarrow0
while more symbols in w {
    c}\leftarrow\mathrm{ the next symbol of w
            -- this moves the head for the w tape
            -- one symbol of }\mp@subsup{\Sigma}{D}{}\mathrm{ to the right.
    scan the }\delta\mathrm{ tape to find a match for }q\mathrm{ and c.
    update }q\leftarrow\mp@subsup{q}{}{\prime}\mathrm{ .
}
scan the F tape to find a match for q.
If a match is found, accept.
Otherwise, reject.
```

\therefore The language $\{D \# w \mid D$ is a DFA that accepts $w\}$ is Turing decidaavember 2006-p.10/14

Does CFG G generate w ?

- Make a NTM that guesses the derivation of w and verifies it?
- How long should the derivation be?
- Let G^{\prime} be a CNF grammar for G.
- If $w=\epsilon$, then check to see if $S_{0} \rightarrow \epsilon$.
- Otherwise, the derivation for w in G^{\prime} has $2|w|-1$ steps.
- Note that the procedure for converting an arbitrary grammar to CNF works is an algorithm we can execute on a TM.
- \therefore The language $\{G \# w \mid G$ is a CFG that generates $w\}$ is Turing decidable.

Hilbert's $10^{\text {th }}$ Problem

- Let P be a multivariable polynomial?
- Does P have a root with integer values for all of the variables?
- Solution:
- Make a NTM that first guesses integer values for the variables.
- Next, the NTM verifies that they are a root.
- If they are a root, then the NTM accepts.
- Otherwise the NTM rejects.
- No upper bound on the size of the values for the variables.
- We have reduced Hilbert's $10^{\text {th }}$ Problem to the Halting Problem.

Hilbert's $10^{\text {th }}$ Problem

- Let P be a multivariable polynomial?
- Does P have a root with integer values for all of the variables?
- Solution:
- Make a NTM that first guesses integer values for the variables.
- ...
- No upper bound on the size of the values for the variables.
- The NTM may not terminate, or ...
- It may just be writing a guessing big number for one of the variables.
- We can't know which is the case without solving the Halting Problem.
- \therefore Hilbert's $10^{\text {th }}$ problem is Turing recognizable.
- We have reduced Hilbert's $10^{\text {th }}$ Problem to the Halting Problem.

Hilbert's $10^{\text {th }}$ Problem

- Let P be a multivariable polynomial?
- Does P have a root with integer values for all of the variables?
- Solution:
- Make a NTM that first guesses integer values for the variables.
- ...
- No upper bound on the size of the values for the variables.
- We have reduced Hilbert's $10^{\text {th }}$ Problem to the Halting Problem.
- If we could solve the Halting Problem, we could solve Hilbert's $10^{t h}$ problem.
- In 1970, Yuri Matijasevic showed that if we could solve Hilbert's $10^{\text {th }}$ problem then we could solve the Halting problem.
- \therefore Hilbert's $10^{\text {th }}$ problem is not Turing decidable.
- Thus, we say that the Halting Problem and Hilbert's $10^{\text {th }}$ problem are equivalent.
- We'll cover this in more detail when we get to Sipser Chapter 5 .

A Caution

- Let $A D D=\{x \# y \# z \mid \operatorname{binary}(x)+\operatorname{binary}(y)=\operatorname{binary}(z)\}$
- Consider:

$$
\text { if }(z==x+y) \text { accept; else while(true); }
$$

- This program terminates iff $z=x+y$.
- We have shown that if we can solve the Halting Problem, then we could solve the addition problem.
- This is true, but not very interesting.
- We can solve the addition problem whether or not we can solve the Halting Problem.

The Odd-Perfect-Number Conjecture

- A perfect number is a number that is equal to the sum of its positive, integer factors (other than itself).
- Example: $6=1+2+3$.
- Example: $28=1+2+4+7+14$.
- Conjecture: All perfect numbers are even.
- Consider:

```
i = 1;
while(true) {
    if(perfect(i)) accept;
    else i = i+1; }
```

- This program terminates iff the Odd-Perfect-Number Conjecture is false.
- We have reduce proving the Odd-Perfect-Number Conjecture to solving the Not-Halting Problem.
- We can't possibly reduce the Non-Halting Problem to the Odd-Perfect-Number Conjecture. Why?

Reading List:

- Today: Sipser, 4.1
- Nov. 3: Sipser, 4.2
- Nov. 6: Sipser, 4.2 (cont., midterm 2 cutoff)
- Nov. 8: Sipser, 5.1
- Nov. 10: Sipser, 5.1 (cont.)
- Nov. 13: Remembrance Day (no lecture)
- Nov. 15: Midterm 2
- Nov. 17: Sipser, 5.2
- Nov. 20: Sipser, 5.3

