The Church-Turing Thesis

Mark Greenstreet, CpSc 421, Term 1, 2006/07

@ Finishing Up Turing Machine Variants
® Non-Deterministic Turing Machines

® Addressable memory

® The Church-Turing Thesis

Anything that can be computed can be computed by a Turing Machine.
® Some Relevant Hilbert Problems

® [s mathematics complete?

® [s mathematics consistent?

® |s mathematics decidable?

30 October 2006 — p.1/10

Non-Deter ministic Turing Machines

® Like an ordinary Turing machine, but with a transition relation.
® /:QxT — P(QxT x{L,R})

® At each step, § gives the set of possible moves.

® A non-deterministic TM, N, accepts string w iff there is some set of choices for
the moves such that NV can reach an accepting state when run with input w.

® Clearly, every deterministic TM is also a non-deterministic TM.

® Can non-deterministic TMs recognize languages that deterministic
TMs cannot?

30 October 2006 — p.2/10

Simulating Non-Deter minism

A -+ Input
B: - - = working tape
C. - - = choices

® Three Tapes:
® A: the input tape. We'll only read from this tape.
® B: the working tape. We'll simulate the NTM on this tape.

C': the choices tape.

® |etd= maxg.|d(q,c)l

® The alphabetfor C'is {0...d — 1}.

® The value of the k" square says what choice to make on the k** move.

30 October 2006 — p.3/10

Simulating Non-Deter minism

A:
B:
C:

| nput

working tape

choices

® Key Observation

If N (the NTM) accept w, it does so after a finite number of moves.
Let m be this number.

If the m choices are written on tape C, then a DT'M can follow the same path

as the NTM and accept w.

30 October 2006 — p.3/10

Simulating Non-Deter minism

A -+ Input
B: - - = working tape
C. - - = choices

® The Algorithm:

while(true) {
next: increment C;

copy A to B;

simulate /N running on tape B:
At each step, use C' to make the choice;
If the choice is invalid or blank, go to next;
If current state of [V is reject, go to next;
If current state of [V is accept, accept;

30 October 2006 — p.3/10

Wrapping-Up Non-Deter minism
® We've shown that if language L is recognized by an NTM, there is

a DTM that recognizes L.

® We haven’t shown that if L is decided by an NTM that there is a
DTM that decides L — why not?

® In fact, DTMs and NTMs recognize the same class of languages.
How can we complete the proof?

30 October 2006 — p.4/10

Addressable Memory

M: [(0,v0)(1,v1)(2,v2), ---(n,vnN)_ .- -

® Add atape, M, which is a list of (address, value) pairs.

® To read, scan the tape until the addresses match and copy the
value to its destination.

® To write, scan the tape until the addresses match and copy the
value onto the memory tape, shifting the subsequent values to the
right if needed.

@® If the address isn’t on the tape, create new (address, ¢) pairs as
needed.

30 October 2006 — p.5/10

M ore Extensions

® A machine with 32 registers?
® A typical instruction set?
® A stack?

® It seems that we can make a Turing Machine do anything that we
associate with a real computer.

30 October 2006 — p.6/10

The Church-Turing Thesis

@ All general purpose computing models:

® Turing Machines, Java programs, A-calculus (the basis for lisp and scheme),

Gddel’s recursive functions, ...

are equivalent to each other.

® An algorithm is a finite description of a computation in any of these
models.

® The Church-Turing thesis is a conjecture:

® It's been proven for all of the models above, and for anything anyone has been
able to think of.

® But we can'’t know for sure that it will apply to anything that comes up in the
future.

® \We just know that it's held up extremely well so far, and an exception would

seem to need something pretty remarkable.

30 October 2006 — p.7/10

Hlbert and the Formalist Program

® All of mathematics can be axiomatized (e.g. Peano arithmetic,
Zermelo-Fraenkel set theory).

® The notion of a proof can be formalized.

® |If C is aclaim, then a proof, P, for C is a sequence of statements in the logic.

® In these formal systems, checking that P is a valid proof for C can be done
completely mechanically, much like a compiler checking a program for syntax or
type-checking errors.

@® This led Hilbert to propose a grand vision for mathematics.

30 October 2006 — p.8/10

TheHilbert Questions

® Twenty-three questions that Hilbert raised in a lecture in 1900 as
being among the most important questions for mathematicians in
the 20" century.

® We'll focus on:

® [|s mathematics complete?
l.e. Can any true statement be proven?

® |s mathematics consistent?
l.e. Is it impossible to prove a contradiction?

® |s mathematics decidable?
l.e. Given any claim, is there a procedure by which we can derive a proof for
the claim or refute it.

® The last one, like many of Hilbert’s questions, asked for a
procedure. This goes back to “What is an algorithm?”

30 October 2006 — p.9/10

What isan Algorithm?

@ Prior to Church & Turing: a description of how to compute something.

® This seems to have been Hilbert’s idea in, for example, asking for a procedure
with a finite number of steps to determing whether or not a polynomial has an
integral root.

® Gauss and the FFT.

@ With Church and Turing, we can be much more precise:
® \We can say what operations are allowed.
® \We can reason about the time and memory required.

® \We can show that there are problems for which no algorithm exists.

@ This led to showing the impossibility of solving several of Hilbert's problems, and

with it, the impossibility of completing the formalist program.

30 October 2006 — p.10/10

Reading List:

Sipser, 4.1

Nov.
Nov. Sipser, 4.2

\[e)V2 Sipser, 4.2 (cont., midterm 2 cutoff)

Nov. Sipser, 5.1

Nov. 10: Sipser, 5.1 (cont.)

Nov. 13: Remembrance Day (no lecture)
Nov. 15: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3

30 October 2006 — p.11/10

	Non-Deterministic Turing Machines
	Simulating Non-Determinism
	Wrapping-Up Non-Determinism
	Addressable Memory
	More Extensions
	The Church-Turing Thesis
	Hlbert and the Formalist Program
	The Hilbert Questions
	What is an Algorithm?
	Reading List:

