
The Church-Turing Thesis
Mark Greenstreet, CpSc 421, Term 1, 2006/07

Finishing Up Turing Machine Variants

Non-Deterministic Turing Machines

Addressable memory

The Church-Turing Thesis
Anything that can be computed can be computed by a Turing Machine.

Some Relevant Hilbert Problems

Is mathematics complete?

Is mathematics consistent?

Is mathematics decidable?

30 October 2006 – p.1/10

Non-Deterministic Turing Machines
Like an ordinary Turing machine, but with a transition relation.

δ : Q × Γ → P(Q × Γ × {L, R})

At each step, δ gives the set of possible moves.

A non-deterministic TM, N , accepts string w iff there is some set of choices for

the moves such that N can reach an accepting state when run with input w.

Clearly, every deterministic TM is also a non-deterministic TM.

Can non-deterministic TMs recognize languages that deterministic
TMs cannot?

30 October 2006 – p.2/10

Simulating Non-Determinism

choices

A: ...

...B:

...C:

Input

working tape

Three Tapes:
A: the input tape. We’ll only read from this tape.

B: the working tape. We’ll simulate the NTM on this tape.

C: the choices tape.
Let d = maxq,c |δ(q, c)|.

The alphabet for C is {0 . . . d − 1}.
The value of the kth square says what choice to make on the kth move.

30 October 2006 – p.3/10

Simulating Non-Determinism

choices

A: ...

...B:

...C:

Input

working tape

Key Observation
If N (the NTM) accept w, it does so after a finite number of moves.

Let m be this number.

If the m choices are written on tape C, then a DTM can follow the same path

as the NTM and accept w.

30 October 2006 – p.3/10

Simulating Non-Determinism

choices

A: ...

...B:

...C:

Input

working tape

The Algorithm:

while(true) {

next: increment C ;

copy A to B;

simulate N running on tape B:

At each step, use C to make the choice;

If the choice is invalid or blank, go to next;

If current state of N is reject, go to next;

If current state of N is accept, accept;

}

30 October 2006 – p.3/10

Wrapping-Up Non-Determinism
We’ve shown that if language L is recognized by an NTM, there is
a DTM that recognizes L.

We haven’t shown that if L is decided by an NTM that there is a
DTM that decides L – why not?

In fact, DTMs and NTMs recognize the same class of languages.
How can we complete the proof?

30 October 2006 – p.4/10

Addressable Memory
M: ...(0,v0)(1,v1)(2,v2), (n,vn)...

Add a tape, M , which is a list of (address, value) pairs.

To read, scan the tape until the addresses match and copy the
value to its destination.

To write, scan the tape until the addresses match and copy the
value onto the memory tape, shifting the subsequent values to the
right if needed.

If the address isn’t on the tape, create new (address, ǫ) pairs as
needed.

30 October 2006 – p.5/10

More Extensions
A machine with 32 registers?

A typical instruction set?

A stack?

It seems that we can make a Turing Machine do anything that we
associate with a real computer.

30 October 2006 – p.6/10

The Church-Turing Thesis
All general purpose computing models:

Turing Machines, Java programs, λ-calculus (the basis for lisp and scheme),

Gödel’s recursive functions, . . .

are equivalent to each other.

An algorithm is a finite description of a computation in any of these
models.

The Church-Turing thesis is a conjecture:
It’s been proven for all of the models above, and for anything anyone has been
able to think of.

But we can’t know for sure that it will apply to anything that comes up in the
future.

We just know that it’s held up extremely well so far, and an exception would

seem to need something pretty remarkable.

30 October 2006 – p.7/10

Hlbert and the Formalist Program
All of mathematics can be axiomatized (e.g. Peano arithmetic,
Zermelo-Fraenkel set theory).

The notion of a proof can be formalized.
If C is a claim, then a proof, P , for C is a sequence of statements in the logic.

In these formal systems, checking that P is a valid proof for C can be done

completely mechanically, much like a compiler checking a program for syntax or

type-checking errors.

This led Hilbert to propose a grand vision for mathematics.

30 October 2006 – p.8/10

The Hilbert Questions
Twenty-three questions that Hilbert raised in a lecture in 1900 as
being among the most important questions for mathematicians in
the 20

th century.

We’ll focus on:
Is mathematics complete?
I.e. Can any true statement be proven?

Is mathematics consistent?
I.e. Is it impossible to prove a contradiction?

Is mathematics decidable?

I.e. Given any claim, is there a procedure by which we can derive a proof for

the claim or refute it.

The last one, like many of Hilbert’s questions, asked for a
procedure. This goes back to “What is an algorithm?”

30 October 2006 – p.9/10

What is an Algorithm?
Prior to Church & Turing: a description of how to compute something.

This seems to have been Hilbert’s idea in, for example, asking for a procedure
with a finite number of steps to determing whether or not a polynomial has an
integral root.

Gauss and the FFT.

With Church and Turing, we can be much more precise:

We can say what operations are allowed.

We can reason about the time and memory required.

We can show that there are problems for which no algorithm exists.

This led to showing the impossibility of solving several of Hilbert’s problems, and

with it, the impossibility of completing the formalist program.

30 October 2006 – p.10/10

Reading List:
Nov. 1: Sipser, 4.1

Nov. 3: Sipser, 4.2

Nov. 6: Sipser, 4.2 (cont., midterm 2 cutoff)

Nov. 8: Sipser, 5.1

Nov. 10: Sipser, 5.1 (cont.)

Nov. 13: Remembrance Day (no lecture)

Nov. 15: Midterm 2

Nov. 17: Sipser, 5.2

Nov. 20: Sipser, 5.3

30 October 2006 – p.11/10

	Non-Deterministic Turing Machines
	Simulating Non-Determinism
	Wrapping-Up Non-Determinism
	Addressable Memory
	More Extensions
	The Church-Turing Thesis
	Hlbert and the Formalist Program
	The Hilbert Questions
	What is an Algorithm?
	Reading List:

