Mark Greenstreet, CpSc 421, Term 1, 2006/07

- A Turing Machine Example
- Formal Definition
- More Examples

A Turing Machine has

- A tape that extends infinitely to the right.
- A finite state control: based on the current state and current input symbol:
- The controller has two special states:

A Turing Machine has

- A tape that extends infinitely to the right.
 - The input string is written on the left end of the tape.
 - The rest of the tape is filled with blanks.
- A finite state control: based on the current state and current input symbol:
- The controller has two special states:

A Turing Machine has

• A tape that extends infinitely to the right.

- A finite state control: based on the current state and current input symbol:
 - The machine writes a new symbol on the current tape square (replacing the symbol it just read).
 - Moves the head one square to the left or right.
 - Enters a new state.
 - The rest of the tape is filled with blanks.
 - The controller has two special states:

A Turing Machine has

- A tape that extends infinitely to the right.
- A finite state control: based on the current state and current input symbol:
- The controller has two special states:
 - accept: If the machine ever enters this state, it halts and the input string is accepted.
 - reject: If the machine ever enters this state, it halts and the input string is rejected.

A = w # w is not a CFL

- $\Sigma = \{0, 1, \#\}.$
- Let p be a proposed pumping lemma constant for A.
- Let $s = 0^p 1^p \# 0^p 1^p$.
- Let u, v, x, y, and z be any strings such that: s = uvxyz;
- |vy| > 0; and
- $|vxy| \leq p$.
- Consider four cases:
- There is no way to break up s that satisfies the conditions of the pumping lemma.
- $\therefore A$ is not a CFL.

A = w # w is not a CFL

- $\Sigma = \{0, 1, \#\}.$
- Let p be a proposed pumping lemma constant for A.
- Let $s = 0^p 1^p \# 0^p 1^p$.
- Let u, v, x, y, and z be any strings such that: s = uvxyz;
- |vy| > 0; and
- $|vxy| \leq p$.
- Consider four cases:
- There is no way to break up s that satisfies the conditions of the pumping lemma.
- $\therefore A$ is not a CFL.

A = w # w is not a CFL

- $\Sigma = \{0, 1, \#\}.$
- Let p be a proposed pumping lemma constant for A.
- Let $s = 0^p 1^p \# 0^p 1^p$.
- Let u, v, x, y, and z be any strings such that: s = uvxyz;
- |vy| > 0; and
- $|vxy| \leq p$.

- If vxy is contained in the initial 0^p1^p of s, then pumping it will create a string that is not in A.
- Likewise, vxy can't be in the final $0^p 1^p$.
- If vxy straddles the two halves of s, then it must be contained in the 1^p#0^p part because |vxy| ≤ p. This means that pumping p will change the number of 1's in the first half and the number of 1's in the second half. Again this produces strings that are not in A.
- If vxy = # then pumping the string changes the number of #'s and produces strings that are not in A.

There is no way to break up s that satisfies the conditions of the pumping lemma.

Formalizing Turing Machines

- A Turing Machine is a 7-tuple: $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:
 - Q is the finite set of states;
 - Σ is the finite input alphabet. The blank symbol, \Box is not in Σ ;
 - Γ is the tape alphabet: $\Sigma \cup \{\Box\} \subseteq \Gamma$;
 - $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function;
 - $q_0 \in Q$ is the start state;
 - $q_{accept} \in Q$ is the accept state; and
 - $q_{reject} \in Q$ is the reject state.

Configurations

- A configuration is a 3-tuple (u, q, v) where
 - $u \in \Gamma^*$ is the tape content to the left of the head.
 - $v \in Q$ is the current state of the Turing machine.
 - $v \in \Gamma^*$ is the tape content starting at the head and to the right. The first symbol of v is the current symbol under the tape head. There are an infinite number of blanks to the right of v.
- We will often write u q v to denote a configuration.
- The initial configuration is with input w is $q_0 w$.

Moves

• A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ can move from configuration C_i to configuration C_j iff

- We write $C_i \xrightarrow{1}{M} C_j$ to denote that M can move from configuration C_i to configuration C_j in one step.
- If $C_i \xrightarrow{1}{M} C_j$, we say: " C_i yields C_j ."

Accepting

- The initial configuration for a TM, M, with start state q_0 reading string w is q_0w .
- M accepts w if there is a sequence of configurations, $C_0, C_1, \ldots C_k$ such that
 - $C_0 = q_0 w;$
 - For all $0 \le i < k$, $C_i \xrightarrow{1}{M} C_{i+1}$; and
 - For all $0 \le i < k$, the state for C_i is not the the reject state.
 - The state for C_k is the accept state.
- If M does not accept w then it may either reject w or M may never terminate. In the latter case, we say that M loops on input w.
 - L(M) is the set of all strings that M accepts.

Rejecting

M rejects w if there is a sequence of configurations, C_0 , C_1 , ..., C_k such that

- $C_0 = q_0 w;$
- For all $0 \le i < k$, $C_i \xrightarrow{1}{M} C_{i+1}$; and
- For all $0 \le i < k$, the state for C_i is not the the accept state.
- The state for C_k is the reject state.

If M does not reject w then it may either accept w or M may never terminate. In the latter case, we say that M loops on input w.

Recognizable/Decidable Languages

- Language L is Turing recognizable iff there exists a Turing machine M such that:
 - M accepts every string in L.
 - M rejects or loops for every string that is not in w.
- Language L is Turing decidable iff there exists a Turing machine M such that:
 - M accepts every string in L.
 - M rejects every string that is not in w.