Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2006/07

- A Turing Machine Example

Formal Definition
More Examples

A Turing Machine

A Turing Machine has

A tape that extends infinitely to the right.
A finite state control: based on the current state and current input symbol:
The controller has two special states:

A Turing Machine

A Turing Machine has

A tape that extends infinitely to the right.

- The input string is written on the left end of the tape.
- The rest of the tape is filled with blanks.

A finite state control: based on the current state and current input symbol:
The controller has two special states:

A Turing Machine

A Turing Machine has

A tape that extends infinitely to the right.

- A finite state control: based on the current state and current input symbol:
- The machine writes a new symbol on the current tape square (replacing the symbol it just read).
- Moves the head one square to the left or right.
- Enters a new state.
- The rest of the tape is filled with blanks.
- The controller has two special states:

A Turing Machine

A Turing Machine has

A tape that extends infinitely to the right.
A finite state control: based on the current state and current input symbol:

- The controller has two special states:
- accept: If the machine ever enters this state, it halts and the input string is accepted.
- re ject: If the machine ever enters this state, it halts and the input string is rejected.

$A=w \# w$ is not a CFL

$\Sigma=\{0,1, \#\}$.
Let p be a proposed pumping lemma constant for A.
Let $s=0^{p} 1^{p} \# 0^{p} 1^{p}$.
Let u, v, x, y, and z be any strings such that: $s=u v x y z$;

- $|v y|>0$; and
$|v x y| \leq p$.
Consider four cases:
There is no way to break up s that satisfies the conditions of the pumping lemma.
$\therefore A$ is not a CFL.

$A=w \# w$ is not a CFL

$\Sigma=\{0,1, \#\}$.
Let p be a proposed pumping lemma constant for A.
Let $s=0^{p} 1^{p} \# 0^{p} 1^{p}$.
Let u, v, x, y, and z be any strings such that: $s=u v x y z$;

- $|v y|>0$; and
$|v x y| \leq p$.
Consider four cases:
There is no way to break up s that satisfies the conditions of the pumping lemma.
$\therefore A$ is not a CFL.

$A=w \# w$ is not a CFL

$\Sigma=\{0,1, \#\}$.
Let p be a proposed pumping lemma constant for A.
Let $s=0^{p} 1^{p} \# 0^{p} 1^{p}$.
Let u, v, x, y, and z be any strings such that: $s=u v x y z$;

- $|v y|>0 ;$ and
$|v x y| \leq p$.
Consider four cases:
- If $v x y$ is contained in the initial $0^{p} 1^{p}$ of s, then pumping it will create a string that is not in A.
- Likewise, vxy can't be in the final $0^{p} 1^{p}$.
- If $v x y$ straddles the two halves of s, then it must be contained in the $1^{p} \# 0^{p}$ part because $|v x y| \leq p$. This means that pumping p will change the number of 1 's in the first half and the number of 1 's in the second half. Again this produces strings that are not in A.
- If $v x y=\#$ then pumping the string changes the number of \#'s and produces strings that are not in A.
There is no wav to break up s that satisfies the conditions of the pumpina lemma. 25 October $2000-\mathrm{p} .3 / 10$

A Machine for $w \# w$

A Machine for $w \# w$

A Machine for $w \# w$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline x & 1 & 1 & 0 & 0 & \# & 0 & 1
\end{array} 1
$$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l}
\hline x & 1 & 1 & 0 & 0 & \# & 0 & 1
\end{array} \mathbf{1} 0
$$

finite
state
control

A Machine for $w \# w$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l}
\hline x & 1 & 1 & 0 & 0 & \# & 0 & 1 & 1
\end{array} 0
$$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l}
\hline x & 1 & 1 & 0 & 0 & \# & 0 & 1
\end{array} 1
$$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l}
\hline x & 1 & 1 & 0 & 0 & \# & 0 & 1
\end{array} \mathbf{1} 0
$$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline x & 1 & 1 & 0 & 0 & \# & x & 1
\end{array} 1
$$

finite
state
control

A Machine for $w \# w$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l}
\hline \mathbf{x} & 1 & 1 & 0 & 0 & \# & x & 1
\end{array} \mathbf{1} 00
$$

finite
state
control

A Machine for $w \# w$

A Machine for $w \# w$

A Machine for $w \# w$

A Machine for $w \# w$

finite
state
control

A Machine for $w \# w$

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l}
\hline x & x & 1 & 0 & 0 & \# & x & 1 & 1
\end{array} 0
$$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l}
\hline x & x & 1 & 0 & 0 & \# & x & 1 & 1 & 0
\end{array} 0
$$

finite
state
control

A Machine for $w \# w$

A Machine for $w \# w$

finite
state
control

A Machine for $w \# w$

$$
\begin{array}{|l|l|l|l|l|l|l|l}
\hline x \times & 1 & 0 & 0 & \# & x & x & 1
\end{array} 0
$$

finite
state
control

A Machine for $w \# w$

finite
state
control

A Machine for $w \# w$

A Machine for $w \# w$

A Machine for $w \# w$

$$
\mathbf{x} \times \mathbf{x} \times \mathbf{x} \mid \boldsymbol{x} \mathbf{x} \mathbf{x} \mathbf{x} \times
$$

finite
state
control

A Machine for $w \# w$

$$
\mathbf{x} \mathbf{x} \mathbf{x}|\mathbf{x}| \boldsymbol{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}
$$

finite
state
control

A Machine for $w \# w$

$$
\mathbf{x} \mathbf{x} \mathbf{x}|\mathbf{x}| \boldsymbol{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}
$$

finite
state
control

A Machine for $w \# w$

$\mathbf{x} \mathbf{x} \mathbf{x}|\mathbf{x}| \mathbf{x} \# \mathbf{x}|\mathbf{x}| \mathbf{x} \mathbf{x}|\mathbf{x}| \square|\quad| \quad \cdots \cdot$

finite
state
control

A Machine for $w \# w$

$\mathbf{x} \mathbf{x} \mathbf{x}|\mathbf{x}| \mathbf{x} \# \mathbf{x} \mathbf{x}|\mathbf{x} \times \mathbf{x} \times \mathbf{x}| \square \quad \mathrm{C}$

finite
state
control

Formalizing Turing Machines

- A Turing Machine is a 7-tuple: $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where:
- Q is the finite set of states;
- Σ is the finite input alphabet. The blank symbol, \square is not in Σ;
- Γ is the tape alphabet: $\Sigma \cup\{\square\} \subseteq \Gamma$;
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function;
- $q_{0} \in Q$ is the start state;
- $q_{\text {accept }} \in Q$ is the accept state; and
- $q_{\text {reject }} \in Q$ is the reject state.

Configurations

- A configuration is a 3-tuple (u, q, v) where
- $u \in \Gamma^{*}$ is the tape content to the left of the head.
- $v \in Q$ is the current state of the Turing machine.
- $v \in \Gamma^{*}$ is the tape content starting at the head and to the right. The first symbol of v is the current symbol under the tape head. There are an infinite number of blanks to the right of v.
- We will often write $u q v$ to denote a configuration.
- The initial configuration is with input w is $q_{0} w$.

Moves

A Turing Machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c e p t}, q_{\text {reject }}\right)$ can move from configuration C_{i} to configuration C_{j} iff

$$
\begin{array}{llll}
C_{i}=u a q_{i} b v & \wedge C_{j}=u q_{j} a c v & \wedge \delta\left(q_{i}, a\right)=\left(q_{j}, c, L\right), & \text { move to le } \\
C_{i}=u q_{i} b v & \wedge C_{j}=u d q_{j} v & \wedge \delta\left(q_{i}, b\right)=\left(q_{j}, d, R\right) & \text { move to ric } \\
C_{i}=\epsilon q_{i} a v & \wedge C_{j}=q_{j} c v & \wedge \delta\left(q_{i}, a\right)=\left(q_{j}, c, L\right), & \text { stuck at lef } \\
C_{i}=u q_{i} b \epsilon & \wedge C_{j}=u q_{j} d \square & \wedge &
\end{array}
$$

- We write $C_{i} \xrightarrow[M]{\stackrel{1}{M}} C_{j}$ to denote that M can move from configuration C_{i} to configuration C_{j} in one step.
- If $C_{i} \xrightarrow[M]{\frac{1}{M}} C_{j}$, we say: " C_{i} yields C_{j}."

Accepting

- The initial configuration for a TM, M, with start state q_{0} reading string w is $q_{0} w$.
- M accepts w if there is a sequence of configurations, $C_{0}, C_{1}, \ldots C_{k}$ such that
- $C_{0}=q_{0} w$;
- For all $0 \leq i<k, C_{i} \xrightarrow[M]{1} C_{i+1}$; and
- For all $0 \leq i<k$, the state for C_{i} is not the the reject state.
- The state for C_{k} is the accept state.
- If M does not accept w then it may either reject w or M may never terminate. In the latter case, we say that M loops on input w.
$L(M)$ is the set of all strings that M accepts.

Rejecting

M rejects w if there is a sequence of configurations, $C_{0}, C_{1}, \ldots C_{k}$ such that

- $C_{0}=q_{0} w$;
- For all $0 \leq i<k, C_{i} \xrightarrow[M]{1} C_{i+1}$; and
- For all $0 \leq i<k$, the state for C_{i} is not the the accept state.
- The state for C_{k} is the reject state.
- If M does not reject w then it may either accept w or M may never terminate. In the latter case, we say that M loops on input w.

Recognizable/Decidable Languages

- Language L is Turing recognizable iff there exists a Turing machine M such that:
- M accepts every string in L.
- M rejects or loops for every string that is not in w.
- Language L is Turing decidable iff there exists a Turing machine M such that:
- M accepts every string in L.
- M rejects every string that is not in w.

