The Halting Problem

Mark Greenstreet, CpSc 421, Term 1, 2006/07

® Halting for Java Programs

® Implications and Turing Machines

23 October 2006 — p.1/13

The Halting Problem

® Let J be a Java program, does J halt when we run it or does it go
on forever (in an infinte loop, inifinite recursion, etc.)?

® Maybe J halts for some inputs and not for others.
Does J halt when run with input 1?

® Does the input include mouse events? communication with other processes?
communication with other computers? ...

® Let's keep it simple.
The program reads from st di n. The input is finite (i.e. eventually there is an
EOF).

® Thus, the input is a string.

® How can we describe J|
® Does J consist of multiple modules?

® Again, we'll go for simplicity. J will be one module with one class. The only
other classes that it uses are the standard ones from j ava. | ang.

® Thus, the program is a string.

23 October 2006 — p.2/13

A halt method

® We want:

boolean halt(String J, String 1) {
// return true if program J halts when run with input I;
I/ return false otherwise.

}...

® Note things that we can check with a compiler:
® Syntax errors.

Undefined variables, classes, methods.

Type mismatches.

Some cases of uninitialized variables.

Wouldn't it be nice to detect infinite loops?

23 October 2006 — p.3/13

L et’s say we could write halt()

/[Given an array of programs, JA, find the first one that halts
// if run on input | and return its index.
/[If there is no such program, return -1.
int firstGoodOne(String[] JA, String 1) {

for(int k = O; k j JA.length; k++) {

if(halt(JA[K], 1))
return(k);
t

return(-1);

}

23 October 2006 — p.4/13

Another program that uses halt()

boolean contrary(String J, String I) {
if(halt(J, 1))
while(true); // go into an infinite loop
return(true);

}

® This program does the opposite of what its arguments would do:

® If J would halt on input I, then contrary loops forever.

® On the other hand, if J runs forever, then contary halts.

23 October 2006 — p.5/13

From contrary to turing

boolean turing(String X) {
if(halt(X, X))
while(true); // go into an infinite loop
return(true);

}

® If X halts when run with its own source code as input, then turing
loops forever.

® On the other hand, if X runs forever, then turing halts.

23 October 2006 — p.6/13

Self Reference

Why would a program have itself as input?

® Compllers:

® Often, the first compiler for a language is written in some other language. E.g.
the first Java compilers were written in C.

® Once the early compilers are working, subsequent compilers are typically
written in their own language:

® javac is written in Java.
® gcc is written in C.

® This makes upgrades easier — if you're interested in working on a better C
compiler, you're probably interested in C, and probably already have a C
compiler handy.

® Theory of computation:

® This is an example of self-reference.

® Self-reference plays a central role in computer science, and is the key to
several of the most profound intellectual discoveries of the 20th century.

23 October 2006 — p.7/13

Back to Turing

boolean turing(String X) {
if(halt(X, X))
while(true); // go into an infinite loop
return(true);

}

® Let T be the string for the program shown above.

® What happens if we invoke the turing method passing it 1" as its
parameter?
® This is running T with T" as its input.
® |If (halt(T,T)), then .

® Otherwise, —(halt(7,T)), then .

® We've shown that halt cannot be written!

23 October 2006 — p.8/13

Halting Recap

@ For the sake of contradiction, assume that halt(String J, String 1) is a function that
returns true if program J halts when run with input I.

® Write

boolean turing(String X) {
if(halt(X, X))
while(true); // go into an infinite loop
return(true);

}

Let T be the string for the source code of this program (including the source code for
halt, etc.).

@ Consider what happens if we run 7" with T as its input string.
Whether halt(7", T') is true or false, we get a contradiction.

@ Thus, our assumption that we could write halt must be wrong (we can definitely write
turing).

@ . Itis not possible to write halt().

23 October 2006 — p.9/13

| mplications

® We’'ll show that the result for halting can be used to show that it is
Impossible to decide any dynamic property of program behavior:

Does the program throw an exception?
Does the program ever execute a particular line of code?

Does the program compute the “right” answer?

Is the program a virus?

® This doesn’t mean the are no programs for which we can decide
these things. For example:

public static void main(String[] args) {

System.out.printin("hello world”); }

definitely halts.

® What this does mean is that we can’t implement tests for these
things that work for all programs.

23 October 2006 — p.10/13

Formalizing these ideas

Is the undecidability of halting a quirk of Java programs, or do other
languages have the same limitation?

Did it matter that we restricted the program and our notion of input?

Wait a second! Any real computer has some limited amount of
memory. Therefore, any real program is a finite automaton. Can't
we figure out these things about a finite automaton?

We’'ll take on each of these objections in the next few weeks.

23 October 2006 — p.11/13

Turing M achines

® A Turing Machine (TM) is a very simple computer.

® A TM has a tape and a finite automaton.

® The tape is infinitely long.
® The tape initially holds the input.
® There is a special tape symbol [J (blank).

@ |Initially, all the tape after the input is an infinite string of [T's.

® At each step, the finite automaton
® reads the symbol on the tape;

® based on the symbol and the state of the finite automaton, the TM
® writes a symbol on the current square;

® moves to a new state;
® moves the tape head one square (the head can move either left or right).

23 October 2006 — p.12/13

What’s next?

® We'll study TMs.

® Any reasonable model for computation can be simulated by a TM. This includes
Java programs, C programs, etc.

@® It's a convenient approximation to assume that typical programming languages

allow an infinite amount of memory. With this assumption, most programming
languages can simulate a TM.

® The halting problem is undecidable for TMs.

® We'll look at many implications of this.

® TMs give us an simple framework in which to develop these results.

® The results apply to more common formulations of computation.

23 October 2006 — p.13/13

	The Halting Problem
	A halt method
	Let's say we could write 	extsf {halt()}
	Another program that uses halt()
	From 	extsf {contrary} to 	extsf {turing}
	Self Reference
	Back to Turing
	Halting Recap
	Implications
	Formalizing these ideas
	Turing Machines
	What's next?

