
The Halting Problem
Mark Greenstreet, CpSc 421, Term 1, 2006/07

Halting for Java Programs

Implications and Turing Machines

23 October 2006 – p.1/13



The Halting Problem
Let J be a Java program, does J halt when we run it or does it go
on forever (in an infinte loop, inifinite recursion, etc.)?

Maybe J halts for some inputs and not for others.
Does J halt when run with input I?

Does the input include mouse events? communication with other processes?
communication with other computers? . . .

Let’s keep it simple.
The program reads from stdin. The input is finite (i.e. eventually there is an
EOF).

Thus, the input is a string.

How can we describe J |
Does J consist of multiple modules?

Again, we’ll go for simplicity. J will be one module with one class. The only
other classes that it uses are the standard ones from java.lang.

Thus, the program is a string.

23 October 2006 – p.2/13



A halt method
We want:

boolean halt(String J, String I) {

// return true if program J halts when run with input I;

// return false otherwise.

. . .

}

Note things that we can check with a compiler:
Syntax errors.

Undefined variables, classes, methods.

Type mismatches.

Some cases of uninitialized variables.

Wouldn’t it be nice to detect infinite loops?

23 October 2006 – p.3/13



Let’s say we could write halt()
// Given an array of programs, JA, find the first one that halts
// if run on input I and return its index.
// If there is no such program, return -1.
int firstGoodOne(String[] JA, String I) {

for(int k = 0; k ¡ JA.length; k++) {
if(halt(JA[k], I))

return(k);
}
return(-1);

}

23 October 2006 – p.4/13



Another program that uses halt()
boolean contrary(String J, String I) {

if(halt(J, I))
while(true); // go into an infinite loop

return(true);
}

This program does the opposite of what its arguments would do:

If J would halt on input I, then contrary loops forever.

On the other hand, if J runs forever, then contary halts.

23 October 2006 – p.5/13



From contrary to turing
boolean turing(String X) {

if(halt(X, X))
while(true); // go into an infinite loop

return(true);
}

If X halts when run with its own source code as input, then turing

loops forever.

On the other hand, if X runs forever, then turing halts.

23 October 2006 – p.6/13



Self Reference
Why would a program have itself as input?

Compilers:
Often, the first compiler for a language is written in some other language. E.g.
the first Java compilers were written in C.

Once the early compilers are working, subsequent compilers are typically
written in their own language:

javac is written in Java.
gcc is written in C.

This makes upgrades easier – if you’re interested in working on a better C

compiler, you’re probably interested in C, and probably already have a C

compiler handy.

Theory of computation:
This is an example of self-reference.

Self-reference plays a central role in computer science, and is the key to

several of the most profound intellectual discoveries of the 20th century.

23 October 2006 – p.7/13



Back to Turing
boolean turing(String X) {

if(halt(X, X))
while(true); // go into an infinite loop

return(true);
}

Let T be the string for the program shown above.

What happens if we invoke the turing method passing it T as its
parameter?

This is running T with T as its input.

If (halt(T, T )), then .

Otherwise, ¬(halt(T, T )), then .

We’ve shown that halt cannot be written!

23 October 2006 – p.8/13



Halting Recap
For the sake of contradiction, assume that halt(String J, String I) is a function that
returns true if program J halts when run with input I.

Write

boolean turing(String X) {

if(halt(X, X))

while(true); // go into an infinite loop

return(true);

}

Let T be the string for the source code of this program (including the source code for
halt, etc.).

Consider what happens if we run T with T as its input string.
Whether halt(T, T ) is true or false, we get a contradiction.

Thus, our assumption that we could write halt must be wrong (we can definitely write
turing).

∴ It is not possible to write halt().

23 October 2006 – p.9/13



Implications
We’ll show that the result for halting can be used to show that it is
impossible to decide any dynamic property of program behavior:

Does the program throw an exception?

Does the program ever execute a particular line of code?

Does the program compute the “right” answer?

Is the program a virus?

This doesn’t mean the are no programs for which we can decide
these things. For example:

public static void main(String[] args) {

System.out.println(”hello world”); }

definitely halts.

What this does mean is that we can’t implement tests for these
things that work for all programs.

23 October 2006 – p.10/13



Formalizing these ideas
Is the undecidability of halting a quirk of Java programs, or do other
languages have the same limitation?

Did it matter that we restricted the program and our notion of input?

Wait a second! Any real computer has some limited amount of
memory. Therefore, any real program is a finite automaton. Can’t
we figure out these things about a finite automaton?

We’ll take on each of these objections in the next few weeks.

23 October 2006 – p.11/13



Turing Machines
A Turing Machine (TM) is a very simple computer.

A TM has a tape and a finite automaton.

The tape is infinitely long.
The tape initially holds the input.

There is a special tape symbol � (blank).

Initially, all the tape after the input is an infinite string of �’s.

At each step, the finite automaton
reads the symbol on the tape;

based on the symbol and the state of the finite automaton, the TM
writes a symbol on the current square;
moves to a new state;
moves the tape head one square (the head can move either left or right).

23 October 2006 – p.12/13



What’s next?
We’ll study TMs.

Any reasonable model for computation can be simulated by a TM. This includes
Java programs, C programs, etc.

It’s a convenient approximation to assume that typical programming languages

allow an infinite amount of memory. With this assumption, most programming

languages can simulate a TM.

The halting problem is undecidable for TMs.

We’ll look at many implications of this.

TMs give us an simple framework in which to develop these results.

The results apply to more common formulations of computation.

23 October 2006 – p.13/13


	The Halting Problem
	A halt method
	Let's say we could write 	extsf {halt()}
	Another program that uses halt()
	From 	extsf {contrary} to 	extsf {turing}
	Self Reference
	Back to Turing
	Halting Recap
	Implications
	Formalizing these ideas
	Turing Machines
	What's next?

