PDAs and CFLs

Mark Greenstreet, CpSc 421, Term 1, 2006/07

- Every CFL is recognized by some PDA.
- Every PDA recognizes a CFL.

PDAs recognize the CFLs

Proof strategy:

- Every CFL is recognized by a PDA
 - Given a CFG G, construct a PDA P such that L(P) = L(G).
 - Let w be any string in L(G), show that $w \in L(P)$.
 - Let w be any string in L(P), show that $w \in L(G)$.
- Every PDA recognizes a CFL
 - Given a PDA P, construct a $\overline{\mathsf{CFG}\ G}$ such that L(G) = L(P).
 - Let w be any string in L(P), show that $w \in L(G)$.
 - Let w be any string in L(G), show that $w \in \overline{L(P)}$.

Given a CFG, construct a PDA

- Let G be a CNF CFG.
- If $w \in L(G)$ then w has a leftmost derivation in G.
 - Let $G = (V, \Sigma, R, S_0)$ be a CFG.
 - A leftmost derivation is a sequence of strings, $s_0, s_1, \dots s_n$ in $(V \cup \Sigma)^*$ such that
 - $s_0 = S_0$.
 - For each $0 \le i < n$, we can write $s_i = u_i v_i w_i$ with $u_i \in \Sigma^*$, $v_i \in V$ and $w_i \in (V \cup \Sigma)^*$. In other words, v_i is the leftmost variable in s_i .
 - $(u_i \rightarrow x_i) \in R$ and $s_{i+1} = u_i x_i w_i$.
- We will construct a PDA whose configurations when reading w correspond to a leftmost derivation of w.

- Let G be a CFG as before, and $u, v \in (V \cup \Sigma)^*$.
- $uv \stackrel{*}{\Rightarrow} w \text{ iff } \exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy).$
- Proof:
 - $(uv \stackrel{*}{\Rightarrow} w) \Leftarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$
 - $(uv \stackrel{*}{\Rightarrow} w) \rightarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$

We prove this by induction on the length of the derivation of w.

- Let G be a CFG as before, and $u, v \in (V \cup \Sigma)^*$.
- $uv \stackrel{*}{\Rightarrow} w \text{ iff } \exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy).$
- Proof:
 - $(uv \stackrel{*}{\Rightarrow} w) \Leftarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$
 - Let x and y be strings in $(V \cup \Sigma)^*$ such that $u \stackrel{*}{\Rightarrow} x$ and $v \stackrel{*}{\Rightarrow} y$.
 - This means there exist strings $\alpha_0 \dots \alpha_m$ and $\beta_0 \dots \beta_n$ such that

$$(\alpha_0 = u) \land (\forall 0 \le i < m. \ \alpha_i \Rightarrow \alpha_{i+1}) \land (\alpha_m = x)$$

$$\land \quad (\beta_0 = v) \land (\forall 0 \le i < n. \ \beta_i \Rightarrow \beta_{i+1}) \land (\beta_n = y)$$

- Let $\gamma_i = \alpha_i \beta_0, \qquad 0 \le i \le m$ = $\alpha_m \beta_{i-m}, \quad m < i \le m+n$
- By construction,

$$(\gamma_0 = uv) \land (\forall 0 \le i < m. \ \gamma_i \Rightarrow \gamma_{i+1}) \land (\gamma_m = xy = w)$$

- This proves the \Leftarrow direction.
- $(uv \stackrel{*}{\Rightarrow} w) \rightarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$

We prove this by induction on the length of the derivation of w.

- Let G be a CFG as before, and $u, v \in (V \cup \Sigma)^*$.
- $uv \stackrel{*}{\Rightarrow} w \text{ iff } \exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy).$
- Proof:
 - $(uv \stackrel{*}{\Rightarrow} w) \Leftarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$
 - $(uv \stackrel{*}{\Rightarrow} w) \rightarrow (\exists x, y.(u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$ We prove this by induction on the length of the derivation of w.
 - Base case: $uv \stackrel{0}{\Rightarrow} w$.
 - Induction step: $uv \stackrel{*}{\Rightarrow} w' \stackrel{1}{\Rightarrow} w$.

- Let G be a CFG as before, and $u, v \in (V \cup \Sigma)^*$.
- $uv \stackrel{*}{\Rightarrow} w \text{ iff } \exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy).$
- Proof:
 - $(uv \stackrel{*}{\Rightarrow} w) \Leftarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$
 - $(uv \stackrel{*}{\Rightarrow} w) \rightarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$ We prove this by induction on the length of the derivation of w.
 - Base case: $uv \stackrel{0}{\Rightarrow} w$. In this case uv = w. Let x = u and y = v. Clearly $u \stackrel{0}{\Rightarrow} x$ and $v \stackrel{0}{\Rightarrow} y$. This satisfies the claim.
 - Induction step: $uv \stackrel{*}{\Rightarrow} w' \stackrel{1}{\Rightarrow} w$.

- Let G be a CFG as before, and $u, v \in (V \cup \Sigma)^*$.
- $uv \stackrel{*}{\Rightarrow} w \text{ iff } \exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy).$
- Proof:
 - $(uv \stackrel{*}{\Rightarrow} w) \Leftarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$
 - $(uv \stackrel{*}{\Rightarrow} w) \rightarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$ We prove this by induction on the length of the derivation of w.
 - Base case: $uv \stackrel{0}{\Rightarrow} w$.
 - Induction step: $uv \stackrel{*}{\Rightarrow} w' \stackrel{1}{\Rightarrow} w$.
 - By the induction hypothesis, we can find strings x' and y' such that $u \stackrel{*}{\Rightarrow} x'$, $v \stackrel{*}{\Rightarrow} y'$ and w' = x'y'.
 - · We can write $w' = \alpha g \beta$ such that $g \to \mu$ and $\alpha \mu \beta = w$.
 - · If $|\alpha g| \leq |x'|$ then we can write $x' = \alpha g \gamma$ and note that $w' = \alpha g \gamma y'$.
 - Let $x = \alpha \mu \gamma$ and y = y'. Thus, $x' \stackrel{1}{\Rightarrow} x$, $y' \stackrel{0}{\Rightarrow} y$, w = xy.
 - We now have x and y such that $u \stackrel{*}{\Rightarrow} x$, $v \stackrel{*}{\Rightarrow} y$, and w = xy. This satisifies the claim.

- Let G be a CFG as before, and $u, v \in (V \cup \Sigma)^*$.
- $uv \stackrel{*}{\Rightarrow} w \text{ iff } \exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy).$
- Proof:
 - $(uv \stackrel{*}{\Rightarrow} w) \Leftarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$
 - $(uv \stackrel{*}{\Rightarrow} w) \rightarrow (\exists x, y. (u \stackrel{*}{\Rightarrow} x) \land (v \stackrel{*}{\Rightarrow} y) \land (w = xy))$ We prove this by induction on the length of the derivation of w.
 - Base case: $uv \stackrel{0}{\Rightarrow} w$.
 - Induction step: $uv \stackrel{*}{\Rightarrow} w' \stackrel{1}{\Rightarrow} w$.
 - This proves the \Rightarrow direction.

Leftmost Derivations (1/2)

- Let $u \in (V \cup \Sigma)^*$ and $u \stackrel{*}{\Rightarrow} w$ where $w \in \Sigma^*$.
- Then, $u \stackrel{*}{\Rightarrow} w$ by a leftmost derivation.
- Proof:
 - Let $s_0, s_1, \ldots s_n$ be a derivation of w.
 - If this is a leftmost derivation, then we're done.
 - Otherwise, choose i such that s_0 through s_i is a leftmost derivation, and $s_i \Rightarrow s_{i+1}$ is not leftmost.
 - We'll show how we can make an equivalent derivation where the first i+1 steps are leftmost and the total number of steps are unchanged.

Leftmost Derivations (2/2)

- Choose i such that s_0 through s_i is a leftmost derivation, and $s_i \Rightarrow s_{i+1}$ is not leftmost.
 - Let $s_i = ugv$ where $u \in \Sigma^*$, $g \in V$, and $v \in (V \cup \Sigma)^*$. In other words, g is the first variable in s_i .
 - As shown above, we can find x and y such that $ug \stackrel{*}{\Rightarrow} x$, $v \stackrel{*}{\Rightarrow} y$ and w = xy.
 - This means there exist strings $\alpha_0 \dots \alpha_m$ and $\beta_0 \dots \beta_n$ such that

$$(\alpha_0 = ug) \land (\forall 0 \le j < m. \ \alpha_j \Rightarrow \alpha_{j+1}) \land (\alpha_m = x)$$

$$\land \quad (\beta_0 = v) \land (\forall 0 \le k < n. \ \beta_i \Rightarrow \beta_{k+1}) \land (\beta_n = y)$$

- Let $s'_j = s_j$, $0 \le j \le i$ $= \alpha_{j-i}v$, $i < j \le i+m$ $= x\beta_{j-(i+m)}$, $i+m < j \le i+m+n$
- The sequence s'_0, \ldots, s'_{i+m+n} is a derivation of w that is leftmost for (at least) its first i+1 steps.
- We can continue this process until we get a leftmost derivation.

CNF and Leftmost Derivations

- If $G = (V, \Sigma, R, S_0)$ is a CNF grammar, and $S_0 \stackrel{*}{\Rightarrow}_{left} \alpha$, then $\alpha \in \Sigma^* \circ V^*$, where $\stackrel{*}{\Rightarrow}_{left}$ denotes a leftmost derivation.
- Proof, by induction on the length of the derivation.
 - Base case: $S_0 \stackrel{0}{\Rightarrow}_{left} \alpha$.
 - \bullet $\alpha = S_0$.
 - Let $s = \epsilon$ and $v = S_0$.
 - The claim is satisfied.
 - Induction step: $S_0 \stackrel{*}{\Rightarrow}_{left} \alpha' \stackrel{1}{\Rightarrow}_{left} \alpha$.
 - By the induction hypothesis, $\alpha' = s'v'$ with $s' \in \Sigma^*$ and $v' \in V^*$.
 - Let v' = gv" with $g \in V$ and v" $\in V^*$.
 - There is some rule, $g \to \beta$ in R such that $w = s'\beta v$.
 - Note that $s' \in \Sigma^*$ and $v'' \in V^*$. Furthermore, either $\beta \in \Sigma$, $\beta \in V^2$, or $g = S_0$ and $\beta = \epsilon$. In each of these cases, $s'\beta v'' \in \Sigma^* \circ V^*$.

Given a CFG, construct a PDA

- Let $G = (V, \Sigma, R, S_0)$ be a CNF CFG.
- The main idea:
 - Construct a PDA, P, whose operation when reading w corresponds to a leftmost derivation of w.
 - Each step of the leftmost derivation produces a string of the form sv where $s \in \Sigma^*$ and $v \in V$.
 - s corresponds to the input read so far.
 - lacktriangle The PDA represents the string v with the sequence of symbols on its stack.
- More formally, ...

Given a CFG, construct a PDA

- Let $G = (V, \Sigma, R, S_0)$ be a CNF CFG.
- The main idea: . . .
- More formally,

$$\begin{array}{lll} P&=&(Q,\Sigma,V\cup\{\$\},\delta,q_0,\{q_3\}),&\text{the PDA}\\ Q&=&\{q_0,q_1,q_2,q_3\}\cup\{q_v\mid\text{for each }v\in V\},&\text{the states}\\ \delta(q_0,\epsilon,\epsilon)&=&\{(q_1,\$)\},&\text{first move: push $\$}\\ \delta(q_1,\epsilon,\epsilon)&=&\{(q_2,S_0)\},&\text{second move: push S_0}\\ \delta(q_2,c,A)&=&\{(q_2,\epsilon)\},&\text{if }(A\to c)\in R\\ \delta(q_2,\epsilon,A)&=&\{(q_X,Y)\},&\text{if }(A\to XY)\in R\\ \delta(q_X,\epsilon,\epsilon)&=&\{(q_2,X)\},&\text{push X}\\ \delta(q_2,\epsilon,\$)&=&\{(q_3,X)\},&\text{accept} \end{array}$$

• Claim: L(P) = L(G).

An Example

The Balanced Parentheses Language:

$$S \rightarrow \epsilon \mid 0S1 \mid SS$$

In CNF

$L(G) \subseteq L(P)$

- Let $w \in L(G)$.
- Let $x_2, x_3, \ldots x_n$ be a leftmost derivation of w.
- For each x_i , let $x_i = s_i v_i$ with $s_i \in \Sigma^*$ and $v_i \in V^*$. Let $y_i \in \Sigma^*$ such that $x_i y_i = w$; in other words, y_i is the unread input.
- Let

$$f(i)=i,$$
 if $i\leq 2$
$$=f(i-1)+1, \quad \text{if } i>2 \text{ and } x_{i-1}\Rightarrow x_i \text{ by a rule of the form} \ X\to c$$

$$=f(i-1)+2, \quad \text{if } i>2 \text{ and } x_{i-1}\Rightarrow x_i \text{ by a rule of the form} \ X\to YZ$$

• Let $C_0, C_1, C_3 \dots C_{f(n)+1}$ be a sequence of configurations of $P \dots$

$L(G) \subseteq L(P)$

- Let $w \in L(G)$.
- Let $x_2, x_3, \dots x_n$ be a leftmost derivation of w.
- For each x_i , let $x_i = s_i v_i$ with $s_i \in \Sigma^*$ and $v_i \in V^*$. Let $y_i \in \Sigma^*$ such that $x_i y_i = w$; in other words, y_i is the unread input.
- Let $C_0, C_1, C_3 \dots C_{f(n)+1}$ be a sequence of configurations of P:

$$C_0 = (q_0, w, \epsilon),$$
 the initial configuration $C_1 = (q_1, w, \$),$ end-marker on stack $C_2 = (q_2, w, S_0\$),$ start symbol on stack $C_{f(i)} = (q_2, y_i, v_i \cdot \$),$ if $2 \le i \le n$ $C_{f(i)+1} = (q_Y, y_i, Z \cdot v_i \cdot \$),$ if $2 \le i \le n$ and $x_i \stackrel{1}{\Rightarrow} x_{i+1}$ by $X \to YZ$ $C_{f(n)+1} = (q_3, \epsilon, \epsilon),$ pop $\$$ and accept

$L(G) \subseteq L(P)$

- Let $w \in L(G)$.
- Let $x_2, x_3, \dots x_n$ be a leftmost derivation of w.
- For each x_i , let $x_i = s_i v_i$ with $s_i \in \Sigma^*$ and $v_i \in V^*$. Let $y_i \in \Sigma^*$ such that $x_i y_i = w$; in other words, y_i is the unread input.
- Let $C_0, C_1, C_3 \dots C_{f(n)+1}$ be a sequence of configurations of $P \dots$
- $C_0, C_1, C_3 \dots C_{f(n)+1}$ is a legal sequence of configurations for P, and $C_{f(n)+1}$ is an accepting configuration.
- \bullet : $w \in L(P)$.

The Example (again, 1/6)

CNF grammar for balanced parantheses, G:

$$S_0 \rightarrow \epsilon \mid ZY \mid ZX \mid SS$$
 $S \rightarrow ZY \mid ZX \mid SS$
 $Z \rightarrow 0$
 $Y \rightarrow SX$
 $X \rightarrow 1$

The Example (again, 2/6)

CNF grammar for balanced parantheses, G:

The Example (again, 3/6)

CNF grammar for balanced parantheses, G:

$$S_0 \rightarrow \epsilon \mid ZY \mid ZX \mid SS$$
 $S \rightarrow ZY \mid ZX \mid SS$
 $Z \rightarrow 0$
 $Y \rightarrow SX$
 $X \rightarrow 1$

The Example (again, 4/6)

CNF grammar for balanced parantheses, G:

$$S_0 \rightarrow \epsilon \mid ZY \mid ZX \mid SS$$
 $S \rightarrow ZY \mid ZX \mid SS$
 $Z \rightarrow 0$
 $Y \rightarrow SX$
 $X \rightarrow 1$

The Example (again, 5/6)

CNF grammar for balanced parantheses, G:

The Example (again, 6/6)

CNF grammar for balanced parantheses, G:

$$S_0 \rightarrow \epsilon \mid ZY \mid ZX \mid SS$$
 $S \rightarrow ZY \mid ZX \mid SS$
 $Z \rightarrow 0$
 $Y \rightarrow SX$
 $X \rightarrow 1$

 $00100111 \in L(G)$

$$ightharpoonup derivation
ightharpoonup d$$