Pushdown Automata

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Formal Definition of Pushdown Automata

Equivalence of PDAs and CFGs

Formalizing Pushdown Automata

- A Pushdown automaton (PDA) is a 6-tuple
 - Q: a finite set of states;
 - Σ : the input alphabet, a finite set;
 - Γ : the stack alphabet, a finite set;
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow 2^{Q \times (\Gamma \cup \{\epsilon\})},$ the transition relation;
 - $q_0 \in Q$: the start state; and
 - $F \subseteq Q$: the set of accepting states.

The Transition Relation

- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to 2^{Q \times (\Gamma \cup \{\epsilon\})}$
 - If $(q', g') \in \delta(q, c, g)$, then the PDA can read input symbol c while in state q with g on the top-of-the-stack; it then can move to state q' and replace g with g'.
 - δ is a relation.
 - \bullet c, g, or g' can be ϵ .

The Transition Relation

- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to 2^{Q \times (\Gamma \cup \{\epsilon\})}$
 - If $(q',g') \in \delta(q,c,g)$, then the PDA can read input symbol c while in state q with g on the top-of-the-stack; it then can move to state q' and replace g with g'.
 - δ is a relation.
 - If there is more than one choice for (q', g') such that $(q', g') \in \delta(q, c, g)$, then the PDA makes a non-deterministic choice. As with NFAs, the PDA accepts a string if there is any way to make the non-deterministic choices to lead to an accepting state.
 - If $\delta(q, c, g) = \emptyset$, then the PDA rejects. As with an NFA, there may still be other non-determistic choices that lead to an accepting state.
 - $c, g, \text{ or } g' \text{ can be } \epsilon$.

The Transition Relation

- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to 2^{Q \times (\Gamma \cup \{\epsilon\})}$
 - If $(q',g') \in \delta(q,c,g)$, then the PDA can read input symbol c while in state q with g on the top-of-the-stack; it then can move to state q' and replace g with g'.
 - δ is a relation.
 - $c, g, \text{ or } g' \text{ can be } \epsilon$.
 - If c is ϵ , then the move doesn't consume any input.
 - If g is ϵ , then the move doesn't consume the the top-of-stack value. If $g = \epsilon$ and $g' \neq \epsilon$, we say that the machine pushes g' onto the stack. This is how the stack grows.
 - If g' is ϵ , then the move removes g from the stack without replacing it. We say that the machine pops g off of the stack. This is how the stack shrinks.
 - If neither g nor g' are ϵ , the move replaces g with g' as the top-of-stack symbol.

Configurations

- A configuration is a 3-tuple, (q, s, γ) where
 - $q \in Q$ denotes the current state of the PDA.
 - $s \in \Sigma^*$ denotes the unread input.
 - $\gamma \in \Gamma^*$ denotes the string of symbols on the stack. For example, $\gamma = XYYZ$ indicates that there are four symbols on the stack with X at the top-of-the-stack.

Moves

- Let $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA.
- We write $(q, s, \gamma) \xrightarrow{1}{P} (q', s', \gamma')$ to indicate that P can move from configuration (q, s, γ) configuration (q', s', γ') in one step.
- We write $(q, s, \gamma) \xrightarrow{*}_{P} (q', s', \gamma')$ iff P can move from configuration (q, s, γ) to configuration (q', s', γ') in zero or more steps.

Moves

- Let $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA.
- We write $(q, s, \gamma) \xrightarrow{1}_{P} (q', s', \gamma')$ to indicate that P can move from configuration (q, s, γ) configuration (q', s', γ') in one step. In particular. $(q, s, \gamma) \xrightarrow{1}_{P} (q', s', \gamma')$ iff
 - $\begin{aligned} \exists c \in (\Sigma \cup \{\epsilon\}). & (c \text{ is the input symbol that } P \text{ reads, if any}) \\ \exists g \in (\Gamma \cup \{\epsilon\}). & (g \text{ is the top-of-stack symbol that } P \text{ reads, if any}) \\ \exists g' \in (\Gamma \cup \{\epsilon\}). & (g' \text{ is the new top-of-stack symbol that } P \text{ writes, if any}) \\ \exists \beta \in \Gamma^*. & (\beta \text{ is the rest of the string of symbols on the stack} \\ & (s = c \cdot s') \land (\gamma = g \cdot \beta) \land (\gamma' = g' \cdot \beta) \land ((q', g') \in \delta(q, c, g)) \end{aligned}$
- We write $(q, s, \gamma) \xrightarrow{*}_{P} (q', s', \gamma')$ iff P can move from configuration (q, s, γ) to configuration (q', s', γ') in zero or more steps.

Moves

- Let $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA.
- We write $(q, s, \gamma) \xrightarrow{1}{P} (q', s', \gamma')$ to indicate that P can move from configuration (q, s, γ) configuration (q', s', γ') in one step.
- We write $(q, s, \gamma) \xrightarrow{*}_{P} (q', s', \gamma')$ iff *P* can move from configuration (q, s, γ) to configuration (q', s', γ') in zero or more steps.

$$\begin{array}{l} (q,s,\gamma) \xrightarrow{*}_{P} (q',s',\gamma') \\ \Leftrightarrow \qquad (q,s,\gamma) = (q',s',\gamma'), \\ \vee \quad \exists (q",s",\gamma"). \ ((q,s,\gamma) \xrightarrow{*}_{P} (q",s",\gamma")) \land ((q",s",\gamma") \xrightarrow{1}_{P} (q',s'',\gamma')) \end{array}$$

Acceptance

A PDA accepts a string iff it can reach an accepting state after reading the entire string:

• $P = (Q, \Sigma, \Gamma, \delta, F)$ accepts w iff

$$(q_0, w, \epsilon) \xrightarrow{*} (q', \epsilon, \gamma)$$

For some $q' \in F$ and some $\gamma \in \Gamma^*$.

The language recognized by P is the set of all strings that P accepts.

 $\Sigma = \{0, 1\}$ $\Gamma = \{\$, finger\}$

