Pushdown Automata

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Formal Definition of Pushdown Automata
Equivalence of PDAs and CFGs

Formalizing Pushdown Automata

- A Pushdown automaton (PDA) is a 6-tuple
- Q : a finite set of states;
- Σ : the input alphabet, a finite set;
- Γ : the stack alphabet, a finite set;
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \times(\Gamma \cup\{\epsilon\}) \rightarrow 2^{Q \times(\Gamma \cup\{\epsilon\})}$, the transition relation;
- $q_{0} \in Q$: the start state; and
- $F \subseteq Q$: the set of accepting states.

The Transition Relation

$\delta: Q \times(\Sigma \cup\{\epsilon\}) \times(\Gamma \cup\{\epsilon\}) \rightarrow 2^{Q \times(\Gamma \cup\{\epsilon\})}$

- If $\left(q^{\prime}, g^{\prime}\right) \in \delta(q, c, g)$, then the PDA can read input symbol c while in state q with g on the top-of-the-stack; it then can move to state q^{\prime} and replace g with g^{\prime}.
- δ is a relation.
- c, g, or g^{\prime} can be ϵ.

The Transition Relation

$\delta: Q \times(\Sigma \cup\{\epsilon\}) \times(\Gamma \cup\{\epsilon\}) \rightarrow 2^{Q \times(\Gamma \cup\{\epsilon\})}$

- If $\left(q^{\prime}, g^{\prime}\right) \in \delta(q, c, g)$, then the PDA can read input symbol c while in state q with g on the top-of-the-stack; it then can move to state q^{\prime} and replace g with g^{\prime}.
- δ is a relation.
- If there is more than one choice for $\left(q^{\prime}, g^{\prime}\right)$ such that $\left(q^{\prime}, g^{\prime}\right) \in \delta(q, c, g)$, then the PDA makes a non-deterministic choice. As with NFAs, the PDA accepts a string if there is any way to make the non-deterministic choices to lead to an accepting state.
- If $\delta(q, c, g)=\emptyset$, then the PDA rejects. As with an NFA, there may still be other non-determistic choices that lead to an accepting state.
- c, g, or g^{\prime} can be ϵ.

The Transition Relation

$\delta: Q \times(\Sigma \cup\{\epsilon\}) \times(\Gamma \cup\{\epsilon\}) \rightarrow 2^{Q \times(\Gamma \cup\{\epsilon\})}$

- If $\left(q^{\prime}, g^{\prime}\right) \in \delta(q, c, g)$, then the PDA can read input symbol c while in state q with g on the top-of-the-stack; it then can move to state q^{\prime} and replace g with g^{\prime}.
- δ is a relation.
- c, g, or g^{\prime} can be ϵ.
- If c is ϵ, then the move doesn't consume any input.
- If g is ϵ, then the move doesn't consume the the top-of-stack value. If $g=\epsilon$ and $g^{\prime} \neq \epsilon$, we say that the machine pushes g^{\prime} onto the stack. This is how the stack grows.
- If g^{\prime} is ϵ, then the move removes g from the stack without replacing it. We say that the machine pops g off of the stack. This is how the stack shrinks.
- If neither g nor g^{\prime} are ϵ, the move replaces g with g^{\prime} as the top-of-stack symbol.

Configurations

A configuration is a 3-tuple, (q, s, γ) where

- $q \in Q$ denotes the current state of the PDA.

O $s \in \Sigma^{*}$ denotes the unread input.

- $\gamma \in \Gamma^{*}$ denotes the string of symbols on the stack. For example, $\gamma=X Y Y Z$ indicates that there are four symbols on the stack with X at the top-of-the-stack.

Moves

- Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ be a PDA.
- We write $(q, s, \gamma) \xrightarrow[P]{\frac{1}{P}}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ to indicate that P can move from configuration (q, s, γ) configuration $\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ in one step.
- We write $(q, s, \gamma) \xrightarrow[P]{*}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ iff P can move from configuration (q, s, γ) to configuration $\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ in zero or more steps.

Moves

- Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ be a PDA.
- We write $(q, s, \gamma) \xrightarrow[P]{\stackrel{1}{P}}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ to indicate that P can move from configuration (q, s, γ) configuration $\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ in one step. In particular. $(q, s, \gamma) \xrightarrow[P]{\stackrel{1}{\longrightarrow}}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ iff

$$
\begin{aligned}
& \exists c \in(\Sigma \cup\{\epsilon\}) .(c \text { is the input symbol that } P \text { reads, if any }) \\
& \exists g \in(\Gamma \cup\{\epsilon\}) .(g \text { is the top-of-stack symbol that } P \text { reads, if any }) \\
& \exists g^{\prime} \in(\Gamma \cup\{\epsilon\}) .\left(g^{\prime} \text { is the new top-of-stack symbol that } P \text { writes, if any }\right) \\
& \exists \beta \in \Gamma^{*} .(\beta \text { is the rest of the string of symbols on the stack } \\
&\left(s=c \cdot s^{\prime}\right) \wedge(\gamma=g \cdot \beta) \wedge\left(\gamma^{\prime}=g^{\prime} \cdot \beta\right) \wedge\left(\left(q^{\prime}, g^{\prime}\right) \in \delta(q, c, g)\right)
\end{aligned}
$$

- We write $(q, s, \gamma) \xrightarrow[P]{*}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ iff P can move from configuration (q, s, γ) to configuration $\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ in zero or more steps.

Moves

- Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ be a PDA.
- We write $(q, s, \gamma) \xrightarrow[P]{\frac{1}{P}}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ to indicate that P can move from configuration (q, s, γ) configuration $\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ in one step.
- We write $(q, s, \gamma) \stackrel{*}{P}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ iff P can move from configuration (q, s, γ) to configuration $\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right)$ in zero or more steps.

$$
\begin{aligned}
&(q, s, \gamma) \xrightarrow[P]{\stackrel{*}{P}}\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right) \\
& \Leftrightarrow \quad(q, s, \gamma)=\left(q^{\prime}, s^{\prime}, \gamma^{\prime}\right), \\
& \vee \quad \exists\left(q^{\prime \prime}, s^{\prime \prime}, \gamma^{\prime \prime}\right) \cdot\left((q, s, \gamma) \xrightarrow[P]{*}\left(q^{\prime \prime}, s^{\prime \prime}, \gamma^{\prime \prime}\right)\right) \wedge\left((q ^ { \prime \prime } , s ^ { \prime \prime } , \gamma ^ { \prime \prime }) \xrightarrow [P] { \frac { 1 } { P } } \left(q^{\prime},\right.\right.
\end{aligned}
$$

Acceptance

A PDA accepts a string iff it can reach an accepting state after reading the entire string:

- $P=(Q, \Sigma, \Gamma, \delta, F)$ accepts w iff

$$
\left(q_{0}, w, \epsilon\right) \xrightarrow[P]{*}\left(q^{\prime}, \epsilon, \gamma\right)
$$

For some $q^{\prime} \in F$ and some $\gamma \in \Gamma^{*}$.

- The language recognized by P is the set of all strings that P accepts.

An Example

An Example

\section*{input: | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

An Example

\section*{input: | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$\$$
\vdots

An Example

finger
$\$ \$$

