
Chomsky Normal Form and
Pushdown Automata

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Chomsky Normal Form

Push Down Automata

13 October 2006 – p.1/??

Chomsky Normal Form (CNF)
A CFG is in Chomsky Normal Form iff

Every rule is of the form
A → x, where A is a variable and x is a terminal, or
A → BC, where A, B and C are variables.

There are no rules of the form A → ǫ unless A is the start variable.

We’ll show that for every CFG, the is a CFG in Chomsky Normal
Form that generates the same language.

CNF is handy at times for proofs. To prove some property of CFLs
we can start by writing:

Let L be an arbitrary CFL, and let G be a CNF CFG for L

. . .

13 October 2006 – p.2/??

Every CFL has a CNF Grammar
Every CFL has a CNF Grammar.

13 October 2006 – p.3/??

Every CFL has a CNF Grammar
Every CFL has a CNF Grammar.

Proof:
Let L be an arbitrary CFL, and let G be a CNF CFG for L.

QED npp

13 October 2006 – p.3/??

Every CFL has a CNF Grammar
Every CFL has a CNF Grammar.

Proof:
Let L be an arbitrary CFL, and let G be a CFG for L.

We will find each rule of G that violates the restrictions of CNF and replace it
other rules that generate the same language but satisfy CNF.

First, we’ll remove ǫ rules: A → ǫ, where A is not the start symbol.
Second, we’ll remove unit rules: A → B, where A and B are variables.
Third, we’ll convert all rules of the form A → u, where u has three or more
variables or symbols into multiple rules of the form A → A1A2.
Fourth, we’ll fix all rules of the form A → Bc, A → bC or A → bc where A,
B, and C are variables, and b and c are terminals.

13 October 2006 – p.3/??

Every CFL has a CNF Grammar
Every CFL has a CNF Grammar.

Proof:
Let L be an arbitrary CFL, and let G be a CFG for L.

We will find each rule of G that violates the restrictions of CNF and replace it
other rules that generate the same language but satisfy CNF.

First, we’ll remove ǫ rules: A → ǫ, where A is not the start symbol.
Second, we’ll remove unit rules: A → B, where A and B are variables.
Third, we’ll convert all rules of the form A → u, where u has three or more
variables or symbols into multiple rules of the form A → A1A2.
Fourth, we’ll fix all rules of the form A → Bc, A → bC or A → bc where A,
B, and C are variables, and b and c are terminals.

13 October 2006 – p.3/??

Proof: ∀ CFL ∃ a CNF Grammar
Let L be a language, and let G be a CFG for L with start variable S.

Introduce a new start variable, S0, and the rule S0 → S

Eliminate ǫ transitions.

Remove unit rules.

Fix rules that produce long strings.

Replace terminals with variables.

We have produced a CNF grammar that generates L.
�.

13 October 2006 – p.4/??

Proof: ∀ CFL ∃ a CNF Grammar
Let L be a language, and let G be a CFG for L with start variable S.

Introduce a new start variable, S0, and the rule S0 → S

Eliminate ǫ transitions.

Remove unit rules.

Fix rules that produce long strings.

Replace terminals with variables.

We have produced a CNF grammar that generates L.
�.

13 October 2006 – p.4/??

Proof: ∀ CFL ∃ a CNF Grammar
Let L be a language, and let G be a CFG for L with start variable S.

Introduce a new start variable, S0, and the rule S0 → S

Eliminate ǫ transitions. For each rule of the form A → ǫ:

eliminate the rule, A → ǫ, and

for every rule of the form B → uAv, add a new rule B → uv.

This process may produce new ǫ rules. For example, if we have the rules
A → B and B → ǫ, then eliminating B → ǫ produces the rule A → ǫ. We
eliminate these new ǫ rules in the same way. Because the new rules that we get
produces shorter strings of terminals and variables than the ones they were
derived from, this process eventually terminates.

Now we have a grammar where S → ǫ is the only possible ǫ rule.

Remove unit rules.

Fix rules that produce long strings.

Replace terminals with variables.

We have produced a CNF grammar that generates L.
�.

13 October 2006 – p.4/??

Proof: ∀ CFL ∃ a CNF Grammar
Let L be a language, and let G be a CFG for L with start variable S.

Introduce a new start variable, S0, and the rule S0 → S

Eliminate ǫ transitions.

Remove unit rules. If A → B and B is a variable:

eliminate the rule, A → B,

for every rule of the form C → uAv, add a new rule C → uBv.

Now we have a grammar where S0 → ǫ is the only possible ǫ rule and every rule
produces a string of one terminal, or at least two terminals and/or variables.

Fix rules that produce long strings.

Replace terminals with variables.

We have produced a CNF grammar that generates L.
�.

13 October 2006 – p.4/??

Proof: ∀ CFL ∃ a CNF Grammar
Let L be a language, and let G be a CFG for L with start variable S.

Introduce a new start variable, S0, and the rule S0 → S

Eliminate ǫ transitions.

Remove unit rules.

Fix rules that produce long strings.
A → u1u2u3 . . . uk becomes A → u1A2, A2 → u2A3, . . . Ak−1 → uk−1uk.
Now, each rule produces a single terminal or a string of length two. or is the rule
S0 → ǫ.

Replace terminals with variables.

We have produced a CNF grammar that generates L.
�.

13 October 2006 – p.4/??

Proof: ∀ CFL ∃ a CNF Grammar
Let L be a language, and let G be a CFG for L with start variable S.

Introduce a new start variable, S0, and the rule S0 → S

Eliminate ǫ transitions.

Remove unit rules.

Fix rules that produce long strings.

Replace terminals with variables. For each rule A → Bc or A → bC where B and
C are variables and b and c are terminals:

replace A → Bc with A → BUc, A → bC with A → UbC, and A → BC with
A → UbUb.

Introduce new rules: Ub → b, etc. C → uAv,

Now, each rule produces two variables, one terminal, or is the rule S0 → ǫ.

We have produced a CNF grammar that generates L.
�.

13 October 2006 – p.4/??

Proof: ∀ CFL ∃ a CNF Grammar
Let L be a language, and let G be a CFG for L with start variable S.

Introduce a new start variable, S0, and the rule S0 → S

Eliminate ǫ transitions.

Remove unit rules.

Fix rules that produce long strings.

Replace terminals with variables.

We have produced a CNF grammar that generates L.
�.

13 October 2006 – p.4/??

Example: Converting to CNF
The original grammar:

S → ASA | aB

A → B | S

B → b | ǫ

13 October 2006 – p.5/??

Example: Converting to CNF
Introduce a new start variable, S0:

S0 → S

S → ASA | aB S → ASA | aB

A → B | S A → B | S

B → b | ǫ B → b | ǫ

13 October 2006 – p.5/??

Example: Converting to CNF
Eliminate ǫ rules:

S0 → S S0 → S

S → ASA | aB S → ASA | aB | a

A → B | S A → B | S | ǫ

B → b | ǫ B → b

13 October 2006 – p.5/??

Example: Converting to CNF
Eliminate ǫ rules:

S0 → S S0 → S

S → ASA | aB | a S → ASA | aB | a |

AS | SA | S

A → B | S | ǫ A → B | S

B → b B → b

13 October 2006 – p.5/??

Example: Converting to CNF
Eliminate unit rules:

S0 → S S0 → ASA | aB | a |

AS | SA

S → ASA | aB | a | S → ASA | aB | a |

AS | SA | S AS | SA

A → B | S A → b | ASA | aB |

a | AS | SA

B → b B → b

13 October 2006 – p.5/??

Example: Converting to CNF
Fix rules that produce long strings:

S0 → ASA | aB | a | S0 → AA1 | aB | a |

AS | SA AS | SA

S → ASA | aB | a | S → AA1 | aB | a |

AS | SA AS | SA

A → b | AA1 | aB | A → b | AA1 | aB

a | AS | SA a | AS | SA

A1 → SA

B → b B → b

13 October 2006 – p.5/??

Example: Converting to CNF
Replace terminals with variables:

S0 → AA1 | aB | a | S0 → AA1 | UaB | a |

AS | SA AS | SA

S0 → AA1 | aB | a | S0 → AA1 | UaB | a |

AS | SA AS | SA

A1 → SA A1 → SA

A → b | AA1 | aB | A → b | AA1 | UaB

a | AS | SA a | AS | SA

A1 → SA A1 → SA

Ua → a

B → b B → b

13 October 2006 – p.5/??

	Chomsky Normal Form (CNF)
	Every CFL has a CNF Grammar
	Proof: $�orall $ CFL $exists $ a CNF Grammar
	Example: Converting to CNF

