Do problems 0 and 1 and any two of 2,3 , or 4 . Graded on a scale of 100 points.
0. (5 points) Your name: \qquad Your student \#: \qquad

1. ($\mathbf{3 5}$ points) (Sipser exercise 1.47)

Let $\Sigma=\{1, \#\}$ and let

$$
A=\left\{w \mid w=x_{1} \# x_{2} \# \cdots \# x_{k}, k \geq 0, \text { each } x_{i} \in 1^{*} \text { and }(i \neq j) \Rightarrow\left(x_{i} \neq x_{j}\right)\right\}
$$

In English, A is the set of all strings consisting of zero or more strings of 1 's separated by \#'s such that no two of these strings of 1's have the same length. For example 1, 1\#11\#111, 1111\#\#11\#1111111 and 111\#1111\#11111\#111111 are in A, but 1\#1 and 1\#11\#111\#11 are not.
Prove that A is not regular.

2. ($\mathbf{3 0}$ points)

(a) (10 points) Give a DFA that recognizes the language $a(a \cup b)^{*} b \cup b(b \cup a)^{*} a$. The input alphabet is $\{a, b\}$. Drawing a state diagram for your DFA is sufficient.
(b) (10 points) Give a NFA that recognizes the language $\left(a b^{*}\right)^{*} c \cup(a b)^{*}$.

The input alphabet is $\{a, b, c\}$. Drawing a state diagram for your NFA is sufficient.
(c) ($\mathbf{1 0}$ points) Give a regular expression corresponding to the NFA:

Answer: \qquad
3. (35 points) Let B be any language. Define

$$
f(B)=\left\{w \mid \exists x \in B \cdot x=w w^{\mathcal{R}}\right\}
$$

where $x^{\mathcal{R}}$ denotes the reverse of string x. For example,

$$
f(\{\text { cattac, doggod, mouseesoum }\})=\{\text { cat, dog, mouse }\}
$$

Show that if B is any regular language, then $f(B)$ is regular as well. It is sufficient to describe the construction of a DFA, NFA or regular expression for $f(B)$ and/or use closure properties that we have already proven. You don't need to give a formal proof that your construction is correct.
4. (35 points) Ever had a broken keyboard that dropped or repeated characters? If so, this problem is for you. Let Σ be a finite alphabet, and let $R E(\Sigma)$ denote all regular expressions over strings in Σ^{*}. Define flakeyKeys : $\Sigma^{*} \rightarrow R E(\Sigma *)$ as shown below

$$
\begin{aligned}
\text { flakeyKeys }(\epsilon) & =\epsilon \\
\text { flakeyKeys }(x \cdot c) & =x \circ c^{*}, \quad \text { for any } c \in \Sigma
\end{aligned}
$$

In other words, flakeyKeys (x) maps the string x to a regular expression that matches any string that can be derived from x by dropping or repeating symbols. For example, flakeyKeys(cat) is the regular expression c*a*t*

Let C be any language. Define

$$
\text { flakeyKeys }(C)=\{w \mid \exists x \in C . w \in \text { flakeyKeys }(x)\}
$$

Show that if C is regular, then flakeyKeys (C) is regular as well. It is sufficient to describe the construction of a DFA, NFA or regular expression for flakeyKeys (C) and/or use closure properties that we have already proven. You don't need to give a formal proof that your construction is correct.

