
Applications of Context Free
Languages

Mark Greenstreet, CpSc 421, Term 1, 2006/07

6 October 2006 – p.1/9



Lecture Outline
Context Free Languages

Parsing ant Interpretation

Ambiguity

6 October 2006 – p.2/9



Parsing (1/2)
Given a CFG, G, we can write a program that reads a string, and if
the string is in L(G), produces the parse-tree for the derivation of
the string.

There’s an O(n3) algorithm that handles any grammar – it’s mostly of
theoretical interest.

Recursive descent parsers handle the non-determinism by trying each
possibility in turn, and backtracking. Although this is worst-case exponential
time, recursive descent works quite well for the grammars of real programming
languages.

There are automatic parser generators that produce table driven parsers.

These only work with a subset of CFGs (typically LALR(1) grammars), but this

subset is sufficient for nearly all practical applications.

6 October 2006 – p.3/9



Parsing (2/2)
With parser generators, writing a parser is nearly as easy as writing
down the CFG.

The “nearly” part is because or the restrictions on the grammar mentioned
above.

If your grammar violates these restrictions, you can adjust the details, but this

requires some understanding of CFGs – that’s (one reason) why you’re in this

class

6 October 2006 – p.4/9



Interpretation
Once you have a parse tree, interpretation is “easy”.

For each terminal, determine the value for that terminal.
Example: INTEGER. Take the string for this particular integer, e.g. 17, and
convert it to a number.
Example: IDENTIFIER. Maintain a hash table that maps names of
variables (i.e. IDENTIFIERs) to their values. Get the value for this variable
from the hash table.

For each terminal, write an interpretation function. This function takes the
values of the child nodes for this parse tree node, and computes a value for the
node itself.

Example: Expr rightarrow Expr
1
PLUS Expr

2
.

The parse-tree node is for an Expr . It’s children are Expr
1

and Expr
2
.

· Invoke the evaluation methods for each of these child expressions to get
their values.

· Compute the sum of these two values.
· Set the value for this node to the sum.

6 October 2006 – p.5/9



Example:
(−b + sqrt(b2 − 4 ∗ a ∗ c))/(2 ∗ a)

ExprList1

ExprPLUS

Expr ExprTIMES

Expr ExprTIMES

Expr

Expr ExprEXP

Expr

IDENTIFIER INTEGER

INTEGER IDENTIFIER

IDENTIFIER

MINUS

−

Expr

Expr

Expr RPARENLPAREN

DIVIDE

IDENTIFIER LPAREN RPARENExprList

Expr

Expr Expr

Expr

TIMES

RPARENLPAREN

IDENTIFIERINTEGER

Expr

2 a

b 2

4 a

c

^

*

*

−

( )

( )

/

( )

*
Expr

IDENTIFIER
b sqrt

MINUS
+

Expr

6 October 2006 – p.6/9



More Interpretation
whileStatement → LPAREN Expr RPAREN Statement

What the interperter does:

Evaluate Expr .

If the result is false, done.

Otherwise, evaluate Statement ; then, go back and test Expr

again, and continue.

6 October 2006 – p.7/9



Ambiguity

Expr → Expr PLUS Expr | Expr TIMES Expr

| INTEGER

Consider: 2 + 3 * 4

ORExpr ExprPLUS

INTEGER
2

INTEGER
4

INTEGER
3

Expr

Expr ExprTIMES Expr ExprPLUS

INTEGER
2

INTEGER
3

INTEGER
4

Expr

Expr ExprTIMES ?

6 October 2006 – p.8/9



Unambiguous Arithmetic

Term → INTEGER | IDENTIFIER

Product → Term | Product TIMES Term

Sum → Product | Sum Plus Product

Expr → Sum

6 October 2006 – p.9/9


	Lecture Outline
	Parsing (1/2)
	Parsing (2/2)
	Interpretation
	Example:
	More Interpretation
	Ambiguity
	Unambiguous Arithmetic

