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Lecture Outline
Context Free Languages

Parsing ant Interpretation

Ambiguity
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Parsing (1/2)
Given a CFG, G, we can write a program that reads a string, and if
the string is in L(G), produces the parse-tree for the derivation of
the string.

There’s an O(n3) algorithm that handles any grammar – it’s mostly of
theoretical interest.

Recursive descent parsers handle the non-determinism by trying each
possibility in turn, and backtracking. Although this is worst-case exponential
time, recursive descent works quite well for the grammars of real programming
languages.

There are automatic parser generators that produce table driven parsers.

These only work with a subset of CFGs (typically LALR(1) grammars), but this

subset is sufficient for nearly all practical applications.
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Parsing (2/2)
With parser generators, writing a parser is nearly as easy as writing
down the CFG.

The “nearly” part is because or the restrictions on the grammar mentioned
above.

If your grammar violates these restrictions, you can adjust the details, but this

requires some understanding of CFGs – that’s (one reason) why you’re in this

class
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Interpretation
Once you have a parse tree, interpretation is “easy”.

For each terminal, determine the value for that terminal.
Example: INTEGER. Take the string for this particular integer, e.g. 17, and
convert it to a number.
Example: IDENTIFIER. Maintain a hash table that maps names of
variables (i.e. IDENTIFIERs) to their values. Get the value for this variable
from the hash table.

For each terminal, write an interpretation function. This function takes the
values of the child nodes for this parse tree node, and computes a value for the
node itself.

Example: Expr rightarrow Expr
1
PLUS Expr

2
.

The parse-tree node is for an Expr . It’s children are Expr
1

and Expr
2
.

· Invoke the evaluation methods for each of these child expressions to get
their values.

· Compute the sum of these two values.
· Set the value for this node to the sum.
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Example:
(−b + sqrt(b2 − 4 ∗ a ∗ c))/(2 ∗ a)
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More Interpretation
whileStatement → LPAREN Expr RPAREN Statement

What the interperter does:

Evaluate Expr .

If the result is false, done.

Otherwise, evaluate Statement ; then, go back and test Expr

again, and continue.
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Ambiguity

Expr → Expr PLUS Expr | Expr TIMES Expr

| INTEGER

Consider: 2 + 3 * 4
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Unambiguous Arithmetic

Term → INTEGER | IDENTIFIER

Product → Term | Product TIMES Term

Sum → Product | Sum Plus Product

Expr → Sum
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