Context Free Languages

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Lecture Outline

Context Free Languages

- CFG Examples

Formal Definition
The Regular Languages are Context Free
$\underline{\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)}$

$\underline{\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)}$

$\underline{\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)}$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$\underline{\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)}$

$$
\begin{aligned}
& \text { (3) } \mathrm{b} \text { sqrt } \mathrm{b} \text { (2) } \\
& \mathrm{a}=1, \quad \mathrm{~b}=3, \quad \mathrm{c}=-4 .
\end{aligned}
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

Arithmetic Expressions

$G=(V, \Sigma, R, E x p r)$, where

$$
\begin{aligned}
V= & \{\text { Expr, ExprList, NonEmptyExprList }\} \\
\Sigma= & \text { \{INTEGER, IDENTIFIER, PLUS, MINUS, } \\
& \text { TIMES, DIVIDE, EXP }, \\
& \text { LPAREN, RPAREN, COMMA }\} \\
R= & \text { See next slide }
\end{aligned}
$$

Rules for Arithmetic Expressions

Expr	\rightarrow	INTEGER
		Expr PLUS Expr
	Expr TIMES Expr	Expr MINUS Expr
		Expr EXP Expr DIVIDE Expr
		MINUS Expr
	IDENTIFIER IPAREN ExprList RPAREN	
ExprList \rightarrow	ϵ	ExprList1
ExprList1 $\rightarrow \quad$	Expr	
		ExpList1 COMMA Expr .

Rules for Arithmetic Expressions

Expr	\rightarrow	INTEGER
		Expr PLUS Expr
	Expr TIMES Expr	Expr MINUS Expr
		Expr EXP Expr DIVIDE Expr
		MINUS Expr
	IDENTIFIER IPAREN ExprList RPAREN	
ExprList \rightarrow	ϵ	ExprList1
ExprList1 $\rightarrow \quad$	Expr	
		ExpList1 COMMA Expr .

Generating an Expression

$$
\left(-b+\operatorname{sqrt}\left(b^{2}-4 * a * c\right)\right) /(2 * a)
$$

Context-Free Grammars

- A context-free grammar (CFG) is a 4-tuple, (V, Σ, R, S) where
- V is a finite set of variables -
V is sometimes called the "stack alphabet";
- Σ is a finite set of symbols -
Σ is the input alphabet;
- R is a finite set of rules -
$R \subseteq V \times\left(V \cup \Sigma^{*}\right)$; in English, a rule maps a variable to a string of variables and/or symbols;
- S is the start variable.

Derivations (1/2)

- If $\alpha \in V$ and $\alpha \rightarrow w$ for some $w \in(V \cup \Sigma)^{*}$, then we say that α produces w.
- Example: $S \rightarrow 0 S 1$.
- We say that S produces $0 S 1$.
- If $x=y \alpha z$ with $y, z \in(V \cup \Sigma)^{*}$ and $\alpha \in V$, and alpha $\rightarrow w$ for some $w \in(V \cup \Sigma)^{*}$, then we say that x yields w.
- Example: $S \rightarrow 0 S 1$.
- We say that 00S10S1 yields 000S110S1.
- Likewise 00S10S1 yields 00S100S11.0000S110S1.
- We write $x \Rightarrow w$ to denote that x yields w.

Derivations (2/2)

- $x, w \in(V \cup \Sigma)^{*}$ and w can be obtained from x by applying zero or more rules, then we say that x derives w.
- We write $x \stackrel{*}{\Rightarrow} w$ to denote that x derives w.
- Example: $S \rightarrow 0 . S 1|S S| \epsilon$.
- $S \Rightarrow S S \Rightarrow 0 S 1 S \Rightarrow 0 S 10 S 1 \Rightarrow 010 S 1 \Rightarrow 0100 S 11 \Rightarrow 010011$.
- Thus, $x \stackrel{*}{\Rightarrow} w$.
- Formally, $x \stackrel{*}{\Rightarrow} w$ iff
- $w=x$, or
- $\exists y .(x \stackrel{*}{=} y) \wedge(y \Rightarrow w)$.
- Note that this is an inductive definition. Therefore, we can use induction to prove properties of derivations.
- Example: same grammar as above.
- $S \stackrel{*}{\Rightarrow} S$. Thus, $S \stackrel{*}{\Rightarrow} S S$. Thus, $S \stackrel{*}{\Rightarrow} 0 S 1 \ldots$

Thus, $S \stackrel{*}{\Rightarrow} 010011$.

Context-Free Languages

Let $G=(V, \Sigma, R, S)$ be a context-free grammar.
$L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}$.

- A language is context free iff it is the language of some CFG.
- Examples of context-free languages:
- $0^{n} 1^{n}$.
- The set of strings in $\{0,1\}^{*}$ with an equal number of 0 's and 1 's.
- Arithmetic expressions as defined on slides 4 and 5 .
- For most programming languages, the set of syntactically correct programs is a context free language.

Regular Languages are Context-Free

Let A be a regular language. Let α be a regular expression that describes A.

$$
\begin{aligned}
& \text { case } \alpha=c, c \in \Sigma: G=(\{S\}, \Sigma,\{S \rightarrow c\}, S) . \\
& \text { case } \alpha=\epsilon: G=(\{S\}, \Sigma,\{S \rightarrow \epsilon\}, S) . \\
& \text { case } \alpha=\emptyset: G=(\{S\}, \Sigma, \emptyset, S) . \\
& \text { case } \alpha=\alpha_{1} \cup \alpha_{2}:
\end{aligned}
$$

- Let $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$ be CFGs such that $L\left(G_{1}\right)=L\left(\alpha_{1}\right)$ and $L\left(G_{2}\right)=L\left(\alpha_{2}\right)$.
- I'll assume $V_{1} \cap V_{2}=\emptyset$. This can be achieved by renaming variable if neccessary. Likewise, l'll assume that there is a variable S, with $S \notin V_{1}$ and $S \notin V_{2}$.
- Let $G=(V, \Sigma, R, S)$ with $V=V_{1} \cup V_{2} \cup\{S\}$ and $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$.
- $L(G)=L\left(\alpha_{1} \cup \alpha_{2}\right)$. The proof is based on the observation that the first step of a derivation in G starts by choosing S_{1} or S_{2} to obtain eventually a string from $L\left(\alpha_{1}\right)$ or $L\left(\alpha_{2}\right)$ respectively.

The Rest of the Proof

case $\alpha=\alpha_{1} \circ \alpha_{2}$:

- Define G_{1} and G_{2} as for the previous case.
- Let $G=(V, \Sigma, R, S)$ with $V=V_{1} \cup V_{2} \cup\{S\}$ and $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$.
- $L(G)=L\left(\alpha_{1} \circ \alpha_{2}\right)$. The proof is based on the observation that the first step of a derivation in G produes $S_{1} S_{2}$. Thus the complete derivation will produce a string from $L\left(G_{1}\right)$ followed by a string from $L\left(G_{2}\right)$. Conversely, any string in $L\left(\alpha_{1} \circ \alpha_{2}\right)$ is in $L(G)$.
case $\alpha=\alpha_{1}^{*}$:
- Define G_{1} as for the previous cases.
- Let $G=(V, \Sigma, R, S)$ with $V=V_{1} \cup\{S\}$ and $R=R_{1} \cup\left\{S \rightarrow \epsilon \mid S S_{1}\right\}$.
- $L(G)=L\left(\alpha_{1}^{*}\right)$. We can show $L(G) \subseteq L\left(\alpha_{1}^{*}\right)$ by induction on the derivation of a string $w \in L(G)$. Likewise, we show $L(G) \subseteq L\left(\alpha_{1}^{*}\right)$ by induction on the number of strings in $L\left(\alpha_{1}\right)$ that are concatenated together to produce a string $w \in L\left(\alpha_{1}^{*}\right)$.

Regular vs. Context-Free

- Every regular language is a context free language. Proof just given.
- There are languages that are context-free but not regular. Example: $0^{n} 1^{n}$.
- Conclusion: $R L \subset C F L$.

Ambiguity

$2+3 * 4$

Expr $\rightarrow \quad$ Expr PLUS Expr | Expr TIMES Expr INTEGER

Arithmetic Terminals

Regular Expressions:

```
INTEGER \(\equiv\) DIGITDIGIT*
    DIGIT \(\equiv 0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9\)
IDENTIFIER \(\equiv\) ISTARTITAIL*
    \(\operatorname{ISTART} \equiv A \cup B \cup \ldots \cup Z \cup a \cup b \cup \ldots \cup z\)
    ITAIL \(\equiv\) ISTARTUDIGIT
    PLUS \(\equiv+\mid\) MINUS \(\equiv-\)
    TIMES \(\equiv \star\) DIVIDE \(\equiv /\)
    \(\left.\begin{array}{rl}\text { EXP } & \equiv \wedge \\ \text { LPAREN } & \equiv(\mid \operatorname{RPAREN} \equiv\end{array}\right)\)
```

