Context Free Languages

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Lecture Outline

Context Free Languages

$0^{n} 1^{n}$ - One More Time

- Formal Definition

More Examples

- Let $A=0^{n} 1^{n}$. A is not regular.
- Here's an inductive definition of the language. A string, w, is in A iff
- $w=\epsilon$, or
- There is a string, $x \in A$ such that $w=0 x 1$.
- Can we formalize this approach?
- Why formalize?

We formalize the definition of languages so we can reason about properties that every language in some class has. That way, we don't have to prove properties individually.

- Why not inductive definitions with English? Because it's not possible/practical to determine what can and cannot be said in English. How would you write an English sentence to state something that can't be said in English?

A Notation for Describing $0^{n} 1^{n}$

- $A \rightarrow \epsilon \mid 0 A 1$
- A string is in the language if we can derive it from A using these two rules.
- Example: 000111

$$
\begin{aligned}
A & \rightarrow 0 A 1 \\
& \rightarrow 00 A 11 \\
& \rightarrow 000 A 111 \\
& \rightarrow 000 \epsilon 111=000111
\end{aligned}
$$

$\# 0^{\prime} \mathbf{s}=\# 1$'s

- Let B be the language of strings that have an equal number of 0 's and 1's.
- From the Sept. 8 notes,
$w=\epsilon$; or
- There is a string x in B such that $w=0 x 1$ or $w=1 x 0$; or
- There are strings x and y in B such that $w=x y$.
- Can we write this in our new notation?

$\# 0^{\prime} \mathbf{s}=\# 1$'s

- Let B be the language of strings that have an equal number of 0 's and 1's.
- From the Sept. 8 notes,
$w=\epsilon$; or
- There is a string x in B such that $w=0 x 1$ or $w=1 x 0$; or
- There are strings x and y in B such that $w=x y$.
- Can we write this in our new notation?

B	\rightarrow	ϵ
		$0 B 1$
\mid	$1 B$	B
		$B B$

- Let C be the language of strings that have an fewer 0's than 1's.
- From the HW 0 solution set: String w is in C iff
- There are strings x and y in B such that $w=x 1 y$, where B is the set of all string with an equal number of ones and zeros as defined in the problem statement.
- There are strings x and y in C such that $w=x y$.
- In our new notation, this is:
- Let C be the language of strings that have an fewer 0's than 1's.
- From the HW 0 solution set: String w is in C iff
- There are strings x and y in B such that $w=x 1 y$, where B is the set of all string with an equal number of ones and zeros as defined in the problem statement.
- There are strings x and y in C such that $w=x y$.
- In our new notation, this is:

Formalizing Our Notation

- A context-free grammar (CFG) is a 4-tuple, (V, Σ, R, S) where ...

Arithmetic Expressions

$G=(V, \Sigma, R, \operatorname{Expr})$, where
$V=\{$ Expr, ExprList, NonEmptyExprList $\}$
$\Sigma=\{$ INTEGER, IDENTIFIER, PLUS,MINUS,
TIMES, DIVIDE, EXP,
LPAREN, RPAREN, COMMA $\}$
Expr \rightarrow INTEGER | IDENTIFIER
| Expr PLUS Expr | Expr MINUS Expr
| Expr TIMES Expr | Expr DIVIDE Expr
| Expr EXP Expr | LPAREN Expr RPAREN
| IDENTIFIER LPAREN ExprList RPAREN
ExprList $\rightarrow \epsilon \mid$ NonEmptyExprList
NonEmptyExprList \rightarrow Expr
NonEmptyExprList COMMA Expr .

Arithmetic Terminals

Regular Expressions:

```
    INTEGER \(\equiv\) DIGITDIGIT*
    DIGIT \(\equiv 0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9\)
IDENTIFIER \(\equiv\) ISTARTITAIL*
ISTART \(\equiv A \cup B \cup \ldots \cup z \cup a \cup b \cup \ldots \cup z\)
    ITAIL \(\equiv\) ISTARTUDIGIT
\begin{tabular}{rl} 
PLUS & \(\left.\equiv+\left\lvert\, \begin{array}{rl}\text { MINUS } & \equiv- \\
\text { TIMES } & \equiv \star \\
\text { DIVIDE } & \equiv 1 \\
\text { LPAREN } & \equiv \wedge \\
\text { COMMA } & \equiv \\
& \equiv \\
\text { RPAREN } & \equiv\end{array}\right.\right)\)
\end{tabular}
```


Arithmetic Example

$2+3 * 4$
Expr \Rightarrow Expr PLUS Expr
\Rightarrow INTEGER PLUS Expr
\Rightarrow INTEGER PLUS Expr TIMES Expr
\Rightarrow INTEGER PLUS INTEGER TIMES Expr
\Rightarrow INTEGER PLUS INTEGER TIMES INTEGER

