
Everything Else About Regular
Languages

Mark Greenstreet, CpSc 421, Term 1, 2006/07

29 September 2006 – p.1/14

Lecture Outline
Regular Expressions

More Pumping Lemma Examples

Properties of Regular Languages

Model Checking

29 September 2006 – p.2/14

One More Pumping Lemma Example
Let A = {w | w = wR} (in English, the palindrome language).
Let the input alphabet be {a,b}.

Let A is not regular.
Let p be a proposed pumping lemma length.

Let w = ap bap. w ∈ A.

Let xyz = w with |y| > 0 and |xy| ≤ p. Let n = |xy|.

Then xy = an, and xyiz = ap+(i−1)|y|bap.

If i 6= 1, then xyiz /∈ A.

A does not satisfy the conditions of the pumping lemma.

A is not regular.

29 September 2006 – p.3/14

Remarks About the Pumping Lemma
If A is finite (i.e. |A| is finite), then A trivially satisfies the pumping
lemma. Let

p = 1 + max
w∈A

|w|

There are no strings in A with length at least p, and the conditions
of the pumping lemma are (vacuously) satisfied.

WARNING: There are non-regular languages that satisfy the
pumping lemma. For example,

Σ = {a,b,c}

A = (b ∪ c)∗a∗bncn

The language A is not regular, but it satisfies the conditions of the
pumping lemma.

Satisfying the conditions of the pumping lemma is a necessary but
not sufficient condition for showing that a language is regular.

29 September 2006 – p.4/14

(b ∪ c)∗a∗bncn

A is not regular.
The regular languages are closed under intersection.

The language a∗b∗c∗ is regular.

Let A′ = A ∩ (a∗b∗c∗) = a∗bncn. A′ is not regular.
Let p be a proposed pumping lemma constant for A′.
Let w = bpcp. Note that w ∈ A′.
Pumping w changes the number of b′s in w and produces a string that isn’t
in A′ (even though it is still in A).
Therefore, A′ is not regular.

Therefore A is not regular.

29 September 2006 – p.5/14

(b ∪ c)∗a∗bncn

A satisfies the pumping lemma.

Let p = 1. Let w be any non-empty string in A.

If w has no a’s, then w ∈ (b ∪ c)+.
Let x = ǫ, y = the first symbol of w, and z = the rest of w.
xyz = w. |y| = 1 > 0. |xy| = 1 = p.
xyiz ∈ (b ∪ c)∗ ⊂ A.
The pumping lemma is satisified.

If w has one or a’s and w starts with an a, then w ∈ a+bncn.
Again, let x = ǫ, y = the first symbol of w, and z = the rest of w.
xyiz ∈ a∗(b ∪ c)∗ ⊂ A.

If w has one or a’s and w starts with a b or c, then w ∈ (b ∪ c)+a+bncn.
Again, let x = ǫ, y = the first symbol of w, and z = the rest of w.
xyiz ∈ (b ∪ c)∗a+bncn ⊂ A.

A satisfies the conditions of the pumping lemma.

Satisfying the conditions of the pumping lemma is a necessary but not sufficient
condition for showing that a language is regular.

There are stronger versions of the pumping lemma that A violates. I plan to put
a question or two on homework 4 that will explore this.

29 September 2006 – p.6/14

Distinguishable Strings
Let A be a language with alphabet Σ.

Strings x and y are distinguished by A iff there is a string z such that xz ∈ A and
yz 6∈ A or vice-versa.

If x and y are not distinguished by A we write x ≡A y. As suggested by the
notation, ≡A is an equivalence relation (see Sipser problem 1.51).

Let M = (Q, Σ, δ, q0, F) be a DFA that recognizes A.
If δ(q0, x) = δ(q0, y) then x ≡A y.

A has at most |Q| equivalence classes.

1

11

1

0
0

0

0

A language is regular iff it generates a finite number of equivalence classes. (See

Sipser problem 1.52)

29 September 2006 – p.7/14

An Example: aibjck, (i = 1) ⇒ (j = k)
Let A = aibjck with i, j, k ∈ N and if i = 1 then j = k (from Sipser
problem 1.54).

A is not regular.
For any m ∈ N, let xm = abm.

For any m, n ∈ N with m 6= n, xm and xn are distinguishable:
xmcm ∈ A and xncm 6∈ A.

A generates an infinite number of equivalence classes.

A is not regular.

A similar argument shows that (b ∪ c)∗a∗bncn is not regular.
For each m ∈ N, xm = babm is in a different equivalence class.

29 September 2006 – p.8/14

Language Emptiness
Let’s say we have a regular language specified by giving a DFA,
NFA, or regular expression.

We can convert NFAs and REs to DFAs; so, I’ll assume that we
have a DFA.

Is this language empty?
Construct the transition graph for the DFA.

Use any graph exploration algorithm to find a path from the start state to an
accepting state.

If it finds a path, then the language is non-empty.

If there is no path, then the language is empty.

If you use breadth-first search, then you find a shortest string in the
language.

How would you test whether or not the language of a DFA, NFA, or
RE is complete (i.e. Σ∗)?

29 September 2006 – p.9/14

DFA Equivalence
Let M1 = (Q1, Σ, δ1, q0,1, F1) and M1 = (Q1, Σ, δ1, q0,1, F1).

We say that M1 and M2 are equivalent iff L(M1) = L(M2).

To test for language equivalence, we note that we can construct a
DFA, M1 ⊕ M2 that accepts iff exactly one of M1 or M2 accept (⊕
indicates “exclusive-OR”).

M1 and M2 are equivalent iff L(M1 ⊕ M2) is empty.

29 September 2006 – p.10/14

DFA Minimization
Let M = (Q, Σ, δ, q0, F) be a DFA. Let qi, qj ∈ Q.

Let M ′ = (Q, Σ, δ, q0, {qi}) be a DFA.
If L(M ′) = ∅, then there is no input string that takes M to state qi.
We can remove qi from Q (and δ) without changing L(M).

Let M ′
i = (Q, Σ, δ, qi, F) and M ′

j = (Q, Σ, δ, qj, F).
If L(M ′

i) = L(M ′
j) then states strings that lead to qi and strings that

lead to qj are indistinguishable by L(M). We can

Replace all arcs into qj with arcs into qi.

Eliminate qj .

When all states are reachable from q0 and distinguishable, we have
a DFA with |Q| equal to the number of equivalence classes of
L(M). This is the smallest DFA that recognizes M .

The smallest DFA is unique up to the names for the states.

29 September 2006 – p.11/14

Model Checking
Mutual Exclusion:

Two clients:

r1/ g1 r2/ g2

r1/g1 r2/g2

Multiple clients:

r1 g1 r2 g2

rp gp

r1 g1 r2 g2

rp gp

r1 g1 r2 g2

rp gp

r1 rp/rp

rpr1/ g1

rpr2/ g2

r2 rp/rp

gp/g1 gp/g2

The third version appears at the end of the notes (slide 18).

29 September 2006 – p.12/14

Can You Really Do This?
YES

The algorithms used in practice are more optimized than the simple
versions given here.

The big challenge is the exponential increase in the number of
states when going from NFAs to DFAs (and similar operations).
This is called the “state-explosion” problem.

For some problems, explicitly keeping track of the set of states is practical.

Symbolic techniques work very well in many cases: represent the set by a
predicate that identifies the members of a set. Boolean satisifiability checkers
can handle very large problems.

There’s no “silver-bullet” that works for all problems.

This is an area of active research.

29 September 2006 – p.13/14

Other Finite Automata Topics
Automata on infinite strings, e.g. Büchi Automata.
A string is accepted if the machine makes an infinite number of visits of accepting
states.

Timed automata: Give upper and lower bounds on how long the machine can
remain in a state. Use this to prove responsiveness and other timing properties of
systems modeled by finite automata.

Quantum Finite Automata:

Machine state is a quantum state. It can be the quantum superposition of two
or more base states.

This gives the machine a limited, probabilistic, form of non-determinism.

The transition relation must be reversible.

2DFAs: The machine can move move its read head either left or right with each
state transition. 2DFAs recognize the regular languages (and nothing else).

Homomorphisms: a whole other set of closure properties that involve mapping

strings in one alphabet to strings in another. The regular languages are closed

under homomorphisms and inverse homomorphisms.

29 September 2006 – p.14/14

Proving Regularity
Show a DFA, NFA, or regular expression for A.

Find zero or more regular langauges, B1, . . . , Bk that can be
combined using the regular operators (union, complement,
concatenation, asteration) to produce A. Note that union and
complement mean you can make any boolean combination (e.g.
AND, exclusive-OR, ...).

Show that A has a finite number of equivalence classes of
distinguished strings (see slide ??). Note that I just touched on this
approach lightly in this lecture. It’s not an “official” part of the
course material. So, I won’t give you problems that require using
this method, but you notice a problem for which this provides an
easy solution, in which case, you can feel free to use it.

29 September 2006 – p.15/14

Proving Non-Regularity
Use the pumping lemma.

Find zero or more regular langauges, B1, . . . , Bk such tht you can
combine A with these languages using the regular operators to
produce a language that is clearly not regular (see slide ??).

Assume that A is regular, and prove a contradiction.

Show that A has an infinite number of equivalence classes of
distinguished strings.

Most (all) problems that you’ll get in this course can be handled by
the first two methods. As with proving regularity, I won’t give you
any problems that require using the equivalence classes method,
but now that you know it, you might find that it you can use it to get
simpler solutions.

29 September 2006 – p.16/14

Proving Closure Properties
Typically, you get asked a question of the form:

Show that if A is regular then some particular variation on A

is regular (e.g. the regular languages are closed under
complement and asteration).

or

Show that if A1 . . . Ak are regular then some particular way
of creating a new language from them creates a regular
language (e.g. the regular languates are closed under union
and concatenation).

Let A′ be the new language that gets created. Because we want to
show that A′ is regular, we can use the methods from slide 15.

Quite frequently, we’ll construct a NFA for A′. Note that becasue A1

. . . Ak are assumed to be regular, we can assume that we are given
NFAs (or DFAs, or REs) for those languages. It is often very helpful
to use pieces of these NFAs, their states, their transition relation,
etc., to define an NFA for A′. 29 September 2006 – p.17/14

The Last Mutual Exclusion Design

r1 rp/rp r2 rp/rp

rpr1/ g1 rpr2/ g2

gp/gp/g1 gp/g2

29 September 2006 – p.18/14

	Lecture Outline
	One More Pumping Lemma Example
	Remarks About the Pumping Lemma
	$(gtt {b} cup gtt {c})^*gtt
{a}^* gtt {b}^n gtt {c}^n$
	$(gtt {b} cup gtt {c})^*gtt
{a}^* gtt {b}^n gtt {c}^n$
	Distinguishable Strings
	An Example: $gtt {a}^igtt {b}^jgtt {c}^k$, $(i = 1)
Rightarrow (j=k)$
	Language Emptiness
	DFA Equivalence
	DFA Minimization
	Model Checking
	Can You Really Do This?
	Other Finite Automata Topics
	Proving Regularity
	Proving Non-Regularity
	Proving Closure Properties
	The Last Mutual Exclusion Design

