More about NFAs

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Lecture Outline

More about NFAs

Defining NFA Acceptance

- Examples

Equivalence of NFAs and DFAs

NFA Acceptance

- An NFA is a 5-tuple: $\left(Q, \Sigma, \delta, q_{0}, F\right)$.
- An NFA accepts string w iff there is at least one path from q_{0} to some state in F that can be taken by reading w.
- How we will formalize this:
- Define δ to return a set of states. $\delta(q, c)$ is the set of all states that can be reached from state q by reading symbol c.
- Extend our definition of δ to handle strings. This is the same general approach as we took with DFAs.
- We need to handle ϵ moves.

We'll define $\phi(q)$ to be the set of all states that are reachable from q by only taking ϵ moves.

- Here's a picture of this process:

Transition Relations for NFAs

$\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{Q}$.

Transition Relations for NFAs

$\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{Q}$.
Let's say this in Java:

```
Collection delta(State q, Symbol c) { ...}
```

delta is a function that takes a state and a symbol as an argument, and returns a set of states as its result. This set is the set of all states that are legal successors to q when symbol c is read.

Transition Relations for NFAs

$\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{Q}$.
Let's say this in Java:

```
Collection delta(State q, Symbol c) { ...}
Collection delta(State q) { ...}
```

We also allow the NFA to make ϵ-moves without consuming any input. In Java, we could express this by overloading delta to have a version that takes a single argument, the state, and no input symbol. In our mathematical formulation, we add ϵ to the set Σ, this is the $(\Sigma \cup\{\epsilon\})$ part of the definition above.

Extending δ to Strings (1/3)

- We would like to know all states that an NFA can reach after reading a string.
- For DFAs, we defined $\delta(q, w)$ to be the state reached by reading string s when starting from state q.
- For an NFA, we can so something similar, we'll define $\delta(B, w)$ to be the set of states that can be reached by reading string s when starting from any state in set B.
- In other words, if you can pick some state in B and some set of choices for the NFA to make when reading w so that the machine lands in state q, then $q \in \delta(B, w)$.

Extending δ to Strings (2/3)

Math: $\delta: 2^{Q} \times \Sigma^{*} \rightarrow 2^{Q}$.

$$
\begin{aligned}
\delta(B, \epsilon) & =B \\
\delta(B, x \cdot c) & =\bigcup_{q \in \delta(B, x)} \delta(q, c)
\end{aligned}
$$

Java: Collection delta(Collection B, SymbolString s) \{ ...\}

Extending δ to Strings (3/3)

Math: $\delta: 2^{Q} \times \Sigma^{*} \rightarrow 2^{Q}$.

$$
\begin{aligned}
\delta(B, \epsilon) & =B \\
\delta(B, x \cdot c) & =\bigcup_{q \in \delta(B, x)} \delta(q, c)
\end{aligned}
$$

- Java:

```
Collection delta(Collection B, SymbolString s) {
    if(s.length() == 0) return(B);
    else {
        SymbolString x = s.substring(0, s.length()-1);
        Symbol c = s.SymbolAt(s.length()-1);
        Collection A = new Collection();
        Iterator it = delta(B, x).iterator();
        while(it.hasNext())
            A.add(delta(it.next(), c));
        return(A) ;
    }
}
```


Handling ϵ Moves

- As defined above, $\delta(B, w)$ doesn't handle ϵ moves.
- For each state q, we'll calculate the set of states that can be reached from q by taking zero or more ϵ moves. We'll call this set $\phi(q)$.

$$
\begin{aligned}
\phi(p) & =\{p, q, r, s, t, u, v\} \\
\phi(q) & =\{q\} \\
\phi(r) & =\{r, t, u, v\} \\
\phi(s) & =\{r, s, t, u, v\} \\
\phi(t) & =\{r, t, u, v\} \\
\phi(u) & =\{r, t, u, v\} \\
\phi(v) & =\{v\}
\end{aligned}
$$

A Formula for

$p \in \phi(q)$ iff

- $p=q$, or
- $\exists r \in \operatorname{phi}(q) . p \in \delta(r, \epsilon)$.
- In Java,

Collection phi(State q) \{
// Compute the set of all states reachable
// from q in the directed graph represented
// by the transition relation.
// Use your favorite graph traversal algorithm.
\}

Combining δ and ϕ

- $\delta(B, \epsilon)=B$

$$
\delta(B, x \cdot c)=\phi\left(\bigcup_{q \in \delta(B, x)} \delta(q, c)\right)
$$

- NFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts string w iff

$$
\delta\left(\phi\left(\left\{q_{0}\right\}\right), w\right) \cap F \quad \neq \emptyset
$$

Our Example Again

Consider reading the string: abcabbbb.

Our Example Again

Consider reading the string: abcabbbb.

Our Example Again

Consider reading the string: єabcabbbb.

Our Example Again

Consider reading the string: abcabbbb.
Reject: ϵ

Our Example Again

Consider reading the string: abcabbbb.
Accept: a

Our Example Again

Consider reading the string: abecabbbb.
Reject: a

Our Example Again

Consider reading the string: abcab.b.b.
Reject: ab

Our Example Again

Consider reading the string: abceabbbb.
Reject: ab

Our Example Again

Consider reading the string: abca.b.b.b.
Reject: abc

Our Example Again

Consider reading the string: abcabbbb.
Accept: abca

Our Example Again

Consider reading the string: abcabebbb.
Accept: abca

Our Example Again

Consider reading the string: abcabbbb.
Reject: abcab

Our Example Again

Consider reading the string: abcabbebb.
Reject: abcab

Our Example Again

Consider reading the string: abcabb.b.b.
Reject: abcabb

Our Example Again

Consider reading the string: abcabbbeb.
Reject: abcabb

Our Example Again

Consider reading the string: abcabbbbb.
Accept: abcabbb

Our Example Again

Consider reading the string: abcabbbbbe ϵ.
Accept: abcabbb

Our Example Again

Consider reading the string: abcabbbbb.
Accept: abcabbbb

Equivalence of NFAs and DFAs

- We want to show that the sets of languages recognized by NFAs and the set recognized by DFAs are the same.
- Showing that every language recognized by a DFA is also recognized by an NFA is easy: every DFA is an NFA.
- Showing that every language recognized by an NFA is also recognized by a DFA is more work. That's what we'll take on in the next few slides.

From an NFA to an Equivalent DFA

- Basic strategy: we noted that the definitions of NFAs and DFAs are quite similar - the main difference is the definition of δ.
- Given an NFA, $N=\left(Q_{N}, \Sigma, \delta_{N}, q_{0, N}, F_{N}\right)$, we'll construct a DFA, $D=\left(Q_{D}, \Sigma, \delta_{D}, q_{0, D}, F_{D}\right)$ such that $L(D)=L(N)$.
- Our strategy is based on thinking about how we defined the acceptance condition for an NFA - we wrote a function that keeps track of the set of possible states that the NFA can be in after reading each symbol of the input.
- If Q_{N} is finite, then the set $2^{Q_{N}}$ is finite as well (even though it may be very big). We'll let $Q_{D}=2^{Q_{N}}$: now each state of the DFA describes the set of states that the NFA could be in at that point.
- Now, we need to define $\delta_{D}, q_{0, d}$, and F_{D}.

We'll start with δ_{D} : once we have that, $q_{0, d}$ and F_{D} are pretty straightforward.

Defining $\delta_{D}(1 / 3)$

- By the definition of $D, \delta_{D}:\left(Q_{D} \times \Sigma\right) \rightarrow Q_{D}$.

Having chosen $Q_{D}=2^{Q_{N}}$ we have $\delta_{D}:\left(2^{Q_{D}} \times \Sigma\right) \rightarrow 2^{Q_{D}}$.

- We also want

$$
\delta_{D}\left(q_{0, d}, w\right) \in F_{D} \quad \Leftrightarrow \quad\left(\delta_{N}\left(\phi_{N}\left(\left\{q_{0, N}\right\}\right), w\right) \cap F_{N}\right) \neq \emptyset
$$

The left side of the \Leftrightarrow says that D accepts w, and the right side says that N accepts w.

- We'll look at the definition of δ_{N} to find a way to define δ_{D}.

Defining $\delta_{D}(2 / 3)$

Definition of δ_{D} (from Sept. 13 lecture):

$$
\begin{aligned}
\delta_{D}(q, \epsilon) & =q \\
\delta_{D}(q, x \cdot c) & =\delta_{D}\left(\delta_{D}(q, x), c\right)
\end{aligned}
$$

Definition of δ_{N} (from slide 10):

$$
\begin{aligned}
\delta_{N}(B, \epsilon) & =B \\
\delta_{N}(B, x \cdot c) & =\phi\left(\bigcup_{q \in \delta_{N}(B, x)} \delta_{N}(q, c)\right)
\end{aligned}
$$

- If we can combine the $\phi, \bigcup_{q \in \ldots}$ and $\delta_{N}(q, c)$ into a single function, we can make the definition of δ_{N} for strings look like the definition of δ_{D}. Let:

$$
\begin{aligned}
& \delta_{\dagger}(B, c)= \\
& \delta_{\dagger}(B, c)=\phi\left(\bigcup_{q \in \delta_{N}(B, x)} \delta_{N}(q, c)\right)
\end{aligned}
$$

Defining $\delta_{D}(3 / 3)$

Definition of δ_{N} (from previous slide):

$$
\begin{aligned}
\delta_{N}(B, \epsilon) & =B \\
\delta_{N}(B, x \cdot c) & =\phi\left(\bigcup_{q \in \delta_{N}(B, x)} \delta_{N}(q, c)\right)
\end{aligned}
$$

Definition of δ_{\dagger} (from previous slide):

$$
\delta_{\dagger}(B, c)=\phi\left(\bigcup_{q \in \delta_{N}(B, x)} \delta_{N}(q, c)\right)
$$

Thus,

$$
\begin{aligned}
\delta_{N}(B, \epsilon) & =B \\
\delta_{N}(B, x \cdot c) & =\delta_{\dagger}\left(\delta_{N}(B, x), c\right)
\end{aligned}
$$

Now, we note that B is a set of states of N, i.e. a subset of Q_{N} and c is a symbol in Σ. Thus, $\delta_{\dagger}:\left(2^{Q_{N}} \times \Sigma\right) \rightarrow 2^{Q_{n}}$. In fact, we will show that δ_{\dagger} is the function δ_{D} that we are looking for.

Constructing an Equivalent DFA

Let $N=\left(Q_{N}, \Sigma, \delta_{N}, q_{0, N}, F_{N}\right)$ be an NFA.
Let $Q_{D}=2^{Q}$

$$
\delta_{D}=\delta_{\dagger}, \quad \text { see slide } 16
$$

$$
q_{0, D}=\phi\left(\left\{q_{0, N}\right\}\right),
$$

ϕ defined on slide 9

$$
F_{D}=\left\{B \subseteq Q_{N} \mid\left(B \cap F_{N}\right) \neq \emptyset\right\}
$$

Let $M=\left(Q_{D}, \Sigma, \delta_{D}, q_{0, D}, F_{D}\right)$ be a DFA.
Claim: $L(M)=L(N)$.

Proof that $L(M)=L(N)$

Let w be a string in $\Sigma *$.
I'll show that $w \in L(M)$ iff $w \in L(N)$.

$$
\begin{array}{lll}
& w \in L(N) & \\
\Leftrightarrow & \left(\delta_{N}\left(\phi\left(\left\{q_{0, N}\right\}\right), w\right) \cap F_{N}\right) \neq \emptyset, & \text { def. NFA accept, slide } 10 \\
\Leftrightarrow & \delta_{N}\left(q_{0, D}, w\right) \in F_{D}, & \text { def. } q_{0, D} \text { and } F_{D}, \text { slide } 17 \\
\Leftrightarrow & \delta_{D}\left(q_{0, D}, w\right) \in F_{D}, & \text { def. } \delta_{D} \text { slides } 17 \text { and } 16 \\
\Leftrightarrow & w \in L(M) & \text { def. DFA accept, Sept. } 13 \text { lec }
\end{array}
$$

Comments about the proof:

- A proof starts by identifying the key idea(s) that show why the claim is true. In this example, the critical observation was that the power set of Q_{N} could be used as Q_{D}.

Once the observation was made, we had to work out how to use it. This was the effort for defining $\delta_{\dagger}, \delta_{D}, q_{0, D}$, and F_{D}. While I used quite a few slides explaining how I came up with these, these explanations aren't part of the final proof. The formal proof can just state the definitions (as I did on slide 17). In fact, adding lots of intuitive explanation clutters a formal proof and should be avoided. On the other hand, textbooks and instructors should provide the intuition before writing the formal proof, or the formal proof seems magical, hard to understand, and hard to see how you could come up with something similar.

Once the definitions were made, the actual proof was very short and simple.

