Nondeterministic Finite Automata

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Lecture Outline

Nondeterministic Finite Automata

- Nondetermistic Finite Automata (NFAs)
- Formal Definition of NFAs
- Applications of Nondeterminism

Ingredients of NFAs

- 1. A state can have multiple outgoing arcs for the same input symbol.
- 2. A state can have no outgoing arcs for some input symbol.
- 3. A state can have arcs that are taken without consuming any input symbol.
- A state may have multiple outgoing arcs labeled with the same input symbol. If that symbol is read, the machine may move along *any* of those arcs.
- A state may have no outgoing arcs labeled for some input symbol. If that symbol is read, the machine immediately rejects.
- A state may have arcs labeled ϵ . When such an arc is taken, no input is read.
- An NFA accepts a string if there is some set of choices for the nondeterministic transitions that lead to an accepting state after reading the complete string.

Consider reading the string: abcabbbb.

Consider reading the string: abcabbbb.

current	previously	current		next
state	read	symbol	unread	state
10	_	_	abcabbbb	

10

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate10 ϵ abcabbbb11

 $10 \xrightarrow{a} 11$

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate11abcabbbb10

 $10 \xrightarrow{a} 11 \xrightarrow{b} 10$

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate10abcabbbb10

 $\mathbf{10} \xrightarrow{a} \mathbf{11} \xrightarrow{b} \mathbf{10} \xrightarrow{c} \mathbf{10}$

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate10abcabbbb11

 $10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{c} 10 \xrightarrow{a} 11$

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate11abcabbbb10

 $10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{c} 10 \xrightarrow{a} 11 \xrightarrow{b} 10$

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate10abcabbbb10

 $10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{c} 10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{b} 10$

Consider reading the string: abcabb∈bb.

current	previously	current		next
state	read	symbol	unread	state
10	abcab	ϵ	bb	20

 $10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{c} 10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{b} 10 \xrightarrow{\epsilon} 20$

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate20abcabbbb21

 $\mathbf{10} \xrightarrow{a} \mathbf{11} \xrightarrow{b} \mathbf{10} \xrightarrow{c} \mathbf{10} \xrightarrow{a} \mathbf{11} \xrightarrow{b} \mathbf{10} \xrightarrow{b} \mathbf{10} \xrightarrow{\epsilon} \mathbf{20} \xrightarrow{b} \mathbf{22}$

Consider reading the string: abcabbbbbcurrentpreviouslycurrentnextstatereadsymbolunreadstate21abcabbbb ϵ 22

 $10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{c} 10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{b} 10 \xrightarrow{c} 20 \xrightarrow{b} 22 \xrightarrow{b} 21$

Consider reading the string: abcabbbb.currentpreviouslycurrentnextstatereadsymbolunreadstate22abcabbbb---

 $10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{c} 10 \xrightarrow{a} 11 \xrightarrow{b} 10 \xrightarrow{b} 10 \xrightarrow{\epsilon} 20 \xrightarrow{b} 22 \xrightarrow{b} 21$ ACCEPTS

Putting it All Together

- Let $\Sigma = \{0, 1\}$.
- Let $S \subseteq \Sigma^*$, such that w is in S iff
 - $w = \epsilon$; or
 - There is a string x in S such that w = 0x1 or w = 1x0; or
 - There are strings x and y in S such that w = xy.
- Prove that w is in S iff the number of O's in w is equal to the number of 1's.
- We'll work this out on the whiteboard.

[Outline section III]