
CpSc 421 Introduction to Theory of Computing September 18, 2006

Today’s lecture: Nondeterministic Finite Automata (NFAs)

I. Nondetermistic Finite AutomataII. Formal Definition of NFAsIII. Applications of Nondeterminism

Schedule:

Today: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework 0 due. itemSeptember 20: Equivalence of DFAs and NFAs.
The rest ofSipser 1.2 (i.e. pages 54–63).

September 22: Regular Expressions – Read:Sipser 1.3.
Lecture will cover through Example 1.58 (i.e. pages 63-59).Homework 2 goes out (due Oct. 2).

September 25: Equivalence of DFAa and Regular Expressions.
The rest ofSipser 1.3 (i.e. pages 63–76).
Homework 1 due.

September 27 and beyond: see Sept. 6 notes.

ε
1 3

2

3. A state can have arcs that are taken
without consuming any input symbol.

1. A state can have multiple outgoing
arcs for the same input symbol.

2. A state can have no outgoing
arcs for some input symbol.

c a

a,c

a,b

b

b

4

Figure 1: The pieces of a NFA

I. Nondetermistic Finite Automata

A. Transition graphs for NFAs:

1. A collection of states and arcs.

2. States drawn with a double circle are accepting.

3. States drawn with a single circle are non-accepting.

4. Arcs are labeled with the input symbol(s) for which they can be taken.

5. A state may have multiple outgoing arcs labeled with the sameinput symbol. If that symbol is read, the
machine may move alongany of those arcs.

6. A state may have no outgoing arcs labeled for some input symbol. If that symbol is read, the machine
immediately rejects.

7. A state may have arcs labeledǫ. When such an arc is taken, no input is read.

8. An NFA accepts a string if there is some set of choices for the nondeterministic transitions that lead to
an accepting state after reading the complete string.

1

a,cba

a

10

b,c
b,c b

aa

222120
ε

11

c

b

Figure 2: The NFA from the Sept. 15 notes

B. An example

1. Figure 2 shows the NFA that we derived in the Sept. 15 notes.

2. Accepting a string
a. A NFA accepts a string if there is at least one way to make the nondeterministic choices when reading

that string such that the machine ends in an accepting state after reading the last symbol of the string.
b. To show that a NFA accepts a string, we just have to show a sequence of states that the machine is

allowed to go through when reading the string such that the final state is accepting.
c. Consider reading the string:abcabbbb.

• The machine starts in state10.
• The following sequence of states shows thatabcabbbb is accepted:

10
a
→ 11

b
→ 10

c
→ 10

a
→ 11

b
→ 10

b
→ 10

ǫ
→ 20

b
→ 22

b
→ 21

• State 21 is an accepting state. Therefore, the string is accepted.
• Note that there are other choices we could have made that would have led to a non-accepting state;

for example:

10
a
→ 11

b
→ 10

c
→ 10

ǫ
→ 20

a
→ 21

b
→ 20

b
→ 22

b
→ 21

b
→ 20

That’s OK. The machine accepts if there is at least one way to make the choices so that the machine
reaches an accepting state after reading the last symbol of the string.

3. Rejecting a string
a. A NFA rejects a string if there is not way to make the nondeterministic choices when reading that

string such that the machine ends in an accepting state afterreading the last symbol of the string.
b. To show that a NFA rejects a string, we have to show thatall sequences of states that the machine is

allowed to go through when reading the string lead to final states that are non-accepting.
c. Consider reading the string:abcacbbb.

• This string is rejected. Consider what state the machine is in after readingabc. If it’s in state 10 or
11, then reading thea symbol ofacbbb will move the machine to state 11, and the machine will
reject when it reads thec (because state 11 has no outgoing edge for symbolc).
On the other hand, if the machin is in state 20, 21 or 22 after readingabc, then it will be in state 20
after reading theac symbols ofacbbb. Then, thebbb string will lead it through the sequence of
states below:

20
b
→ 22

b
→ 21

b
→ 20

State 20 is not an accepting state, so the machine rejects thestring.
• While the argument above shows thatabcacbbb is rejected, it would be very tedius if we had to find

a new way to analyze each string for each NFA to come up with a proof for acceptance or rejection.
We would like a general method that will work with all NFAs andstrings.

2

• Instead of considering individual trajectories, we can considerall possible at once by keeping track
of theset of states that the NFA could possibly be in:

initial state: {10}
ǫ
→

{10, 20}
a
→

{11, 21}
b
→

{10, 20}
ǫ
→

{10, 20}
c
→

{10, 20}
ǫ
→

{10, 20}
a
→

{11, 21}
c
→, (state 11 goes “Poof!”)

{20}
b
→

{22}
b
→

{21}
b
→

{20}, reject jpp p

This shows that theonly state that our NFA can reach for this input string is state 20.State 20 is not
an accepting state. Therefore, the stringabcacbbb is rejected.

4. Accepting again.

a. We can use the method described above to show that a string is accepted.
b. Consider again reading the string:abcabbbb.

initial state: {10}
ǫ
→

{10, 20}
a
→

{11, 21}
b
→

{10, 20}
ǫ
→

{10, 20}
c
→

{10, 20}
ǫ
→

{10, 20}
a
→

{11, 21}
b
→

{10, 20}
ǫ
→

{10, 20}
b
→

{10, 22}
ǫ
→

{10, 20, 22}
b
→

{10, 21, 22}
ǫ
→

{10, 20, 21, 22}
b
→

{10, 20, 21, 22}
ǫ
→

{10, 20, 21, 22}, the set of possible final states

The set of possible final states includes state 21, the accepting state. Therefore, the string is accepted.

II. Formal Definition of NFAs

A. The pieces of an NFA

1. A NFA is a 5-tuple:(Q, Σ, δ, q0, F) where
Q is a finite set of states.

Σ is a finite set of symbols (the alphabet).

3

δ : Q × (Σ ∪ {ǫ}) → 2Q is the state transition relation.

q0 ∈ Q is the initial state.

F ⊆ Q is the set of accepting states.

2. Comparison with a DFA
a. Q, Σ, q0, andF are the same.
b. δ is different.

DFA: δ : Q × Σ → Q.
NFA: δ : Q × (Σ ∪ {ǫ}) → 2Q

The DFA maps a (state, input-symbol) pair to the next state. For the NFA, recall that2Q is the power
set ofQ (i.e. the set of all subsets ofQ, seeSipser, p. 6, Sipser writesP(Q) where I wrote2Q, either
is acceptable). Thus, an NFA maps a (state, input-symbol) pair to the set of possible next states. The
machine can move to any one of these sets.
The other difference is that the NFA includes mappings for (state,ǫ) pairs. These describe moves that
the machine can make without consuming an input symbol.

B. Acceptance

1. Let N = (Q, Σ, δ, q0, F) be an NFA andw ∈ Σ∗ be a string.N acceptsw iff there is a sequence of state
transitions usingw as input that leads to an accepting state afterw has been consumed.

2. A mathematical definition for machines withoutǫ transitions.
a. We extendδ to apply to sets of states and strings:

δ(B, ǫ) = B

δ(B, x · c) =
⋃

q∈δ(B,x)

δ(q, c)

In English,δ(B, w) computes all states reachable starting from some state inB, making moves that are
allowed when readingw. If w = ǫ, thenδ(B, w) = B (because we’re ignoringǫ moves for now). If
w = x · c, we first find all states that are reachable by starting from a state inB an readingx – thats
theq ∈ δ(B, x) part of the defintion. For each such state,q, we find where the machine can go when
readingc – that’sδ(q, c) – and we take the union of all of those sets. That union is the set of all states
that can be reached starting from a state inB and readingw.

b. N acceptsw iff (δ({q0}, w) ∩ F) 6= ∅.
In English, that says we find all states that can be reached by starting in stateq0 and readingw. If any
of these states are inF , then it is possible forN to reach an accepting state when readingw; thus,N
acceptsw.

3. Handlingǫ transitions.
a. For each state,q, we define a setφ(q) of states that can be reached by zero or moreǫ moves starting

from q. Statep is in φ(q) iff
• p = q, or
• ∃r ∈ φ(q). p ∈ δ(r, ǫ).

b. We now extendφ(q) to apply to sets:

φ(B) =
⋃

q∈B

φ(q)

c. We now extendδ(B, w) to includeǫ moves:

δ(B, ǫ) = φ(B)

δ(B, x · c) = φ

⋃

q∈δ(B,x)

δ(q, c)

4

3 2 1 0

0,1

10,1 0,1 0,1
4

Figure 3: Another NFA example

In English, this says that for each input symbol, we calculate δ as before. Then, for each state that we
reach, we find all states that are reachable from it by takingǫ moves.

d. N acceptsw iff (δ({q0}, w) ∩ F) 6= ∅.
The same as before in II.B.2.b, we’ve just extended the definition of δ to handleǫ moves.

C. An Example – see figure 3

1. This NFA accepts011010:

initial state: {0}
0
→

{0}
1
→

{0, 1}
1
→

{0, 1, 2}
0
→

{0, 2, 3}
1
→

{0, 1, 3, 4}
0
→

{0, 2, 4}, ({0, 2, 4} ∩ {4} = {4}) ⇒ accept jpp p

2. This NFA rejects10111:

initial state: {0}
1
→

{0, 1}
0
→

{0, 2}
1
→

{0, 1, 3}
1
→

{0, 1, 2, 4}
1
→

{0, 1, 2, 3}, ({0, 1, 2, 3} ∩ {4} = ∅) ⇒ reject jpp p

III. Applications of Nondeterminism

A. Modeling the environment of a program

B. Avoiding over-specification

5

