CpSc 421 Introduction to Theory of Computing September 0862

Today’slecture: Nondeter ministic Finite Automata (NFAS)

I. Nondetermistic Finite Automatdl. Formal Definition of NFAd I1. Applications of Nondeterminism

Schedule:

Today: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework O due. itei@eptember 20: Equivalence of DFAs and NFAs.
The rest ofSipser 1.2 (i.e. pages 54—63).

September 22: Regular Expressions — Reafpser 1.3.
Lecture will cover through Example 1.58 (i.e. pages 63-bf#)mework 2 goes out (due Oct. 2).

September 25: Equivalence of DFAa and Regular Expressions.
The rest ofSipser 1.3 (i.e. pages 63—76).
Homework 1 due.

September 27 and beyond: see Sept. 6 notes.

a, b b
b €
c a
a,c
1. A state can have multiple outgoing 2. A state can have no outgoing 3. A state can have arcs that are taker
arcs for the same input symbol. arcs for some input symbol. without consuming any input symbo

Figure 1: The pieces of a NFA

l. Nondetermistic Finite Automata
A. Transition graphs for NFAs:
A collection of states and arcs.
States drawn with a double circle are accepting.
States drawn with a single circle are non-accepting.
Arcs are labeled with the input symbol(s) for which they cartdken.

A state may have multiple outgoing arcs labeled with the siamat symbol. If that symbol is read, the
machine may move alorany of those arcs.

6. A state may have no outgoing arcs labeled for some input sknibihat symbol is read, the machine
immediately rejects.

A state may have arcs labeledwWhen such an arc is taken, no input is read.

An NFA accepts a string if there is some set of choices for thredeterministic transitions that lead to
an accepting state after reading the complete string.

o s~ bR

© N

Figure 2: The NFA from the Sept. 15 notes

An example

Figure 2 shows the NFA that we derived in the Sept. 15 notes.
Accepting a string
A NFA accepts a string if there is at least one way to make tinelaterministic choices when reading
that string such that the machine ends in an accepting Stetaeading the last symbol of the string.
To show that a NFA accepts a string, we just have to show a sequ# states that the machine is
allowed to go through when reading the string such that tta tate is accepting.
Consider reading the stringbcabbbb.
The machine starts in staté.
The following sequence of states shows thiat abbbb is accepted:

103112105103 112102105202 22891

State 21 is an accepting state. Therefore, the string iptete
Note that there are other choices we could have made thathviawke led to a non-accepting state;
for example:

103112105 10520221 2202922201 299

That's OK. The machine accepts if there is at least one wayalkerthe choices so that the machine
reaches an accepting state after reading the last symbue atting.
Rejecting a string
A NFA rejects a string if there is not way to make the nondeteistic choices when reading that
string such that the machine ends in an accepting stateraftding the last symbol of the string.
To show that a NFA rejects a string, we have to show #iagequences of states that the machine is
allowed to go through when reading the string lead to finaéstthat are non-accepting.
Consider reading the stringbcacbbb.
This string is rejected. Consider what state the machineadter readingbc. If it's in state 10 or
11, then reading tha symbol ofacbbb will move the machine to state 11, and the machine will
reject when it reads the (because state 11 has no outgoing edge for symaipol
On the other hand, if the machin is in state 20, 21 or 22 af@dirggabc, then it will be in state 20
after reading th@c symbols ofacbbb. Then, thebbb string will lead it through the sequence of
states below:
20222 221 2 90

State 20 is not an accepting state, so the machine rejectrihg.

While the argument above shows théitcac bbb is rejected, it would be very tedius if we had to find
a new way to analyze each string for each NFA to come up witloaffior acceptance or rejection.
We would like a general method that will work with all NFAs asttings.

e Instead of considering individual trajectories, we cansiderall possible at once by keeping track
of the set of states that the NFA could possibly be in:

initial state: {10} =
{10,20} &
{11,213 >
{10,20} =
{10,20} =
10,20} 5
{10,20} =
{11,21} =, (state 11 goes “Poof!”)
{20 2
{22} 2
{21}y 2

{20}, reject(s)

This shows that thenly state that our NFA can reach for this input string is statetate 20 is not
an accepting state. Therefore, the stréfiracbbb is rejected.

4, Accepting again.

a. We can use the method described above to show that a stringeptad.
b. Consider again reading the strirepcabbbb.

initial state: {10} =
{10,20} 2
{11,213 >
{10,20} =
{10,20} =
{10,20} 5
{10,20} =
{11,213 2
{10,20} 5
{10,203 >
{10,22} S
{10,20,22} >
{10,21,22} =
{10,20,21,22} 2
{10,20,21,22} =

{10, 20, 21, 22}, the set of possible final states

The set of possible final states includes state 21, the dngegthte. Therefore, the string is accepted.

1. Formal Definition of NFAs

A. The pieces of an NFA

1. A NFA is a 5-tuple:(@, %, 9, qo, F') where
Q is a finite set of states.

Y is a finite set of symbols (the alphabet).

§:Q x (L U{e}) — 29 is the state transition relation.
qo € Q is the initial state.
F C Q is the set of accepting states.
2. Comparison with a DFA
a. Q, X, qo, andF are the same.
b. ¢ is different.
DFA:§:Q x X — Q.
NFA: §: Q x (XU {e}) — 29
The DFA maps a (state, input-symbol) pair to the next stade.thie NFA, recall tha2® is the power
set ofQ (i.e. the set of all subsets 6f, seeSpser, p. 6, Sipser write®(Q) where | wrote2?, either
is acceptable). Thus, an NFA maps a (state, input-symbalYeé#he set of possible next states. The
machine can move to any one of these sets.
The other difference is that the NFA includes mappings ftatése) pairs. These describe moves that
the machine can make without consuming an input symbol.

B. Acceptance
1 LetN = (Q, X%, 4, g0, F') be an NFA andv € X* be a string.N acceptsv iff there is a sequence of state
transitions usingv as input that leads to an accepting state aftéas been consumed.
2. A mathematical definition for machines withautransitions.
a. We extend to apply to sets of states and strings:

§(B,e) = B
§(B,x-c) = U 5(q,¢)

q€s(B,x)

In English,é(B, w) computes all states reachable starting from some stdenmaking moves that are
allowed when reading. If w = ¢, thend(B,w) = B (because we're ignoringmoves for now). If
w = x - ¢, we first find all states that are reachable by starting frorate $n B an readinge — thats
theq € 0(B, z) part of the defintion. For each such statewe find where the machine can go when
readinge — that'sé(q, ¢) — and we take the union of all of those sets. That union is thefsdl states
that can be reached starting from a stat®iand readingo.
b. N acceptsw iff (6({qo},w) N F) # 0.
In English, that says we find all states that can be reachethbyng in statey, and readingv. If any
of these states are i, then it is possible folV to reach an accepting state when readinghus, N
acceptsv.
3. Handlinge transitions.
a. For each state;, we define a seb(q) of states that can be reached by zero or marmves starting
from g. Statep is in ¢(q) iff
e p=gq,0r
o Jre¢(q).pedre).
b. We now extend(q) to apply to sets:

C. We now extend (B, w) to includee moves:

6(B,e) = ¢(B)

6(B,x-c) = ¢ U 5((]’0)

C.

.
A.

B.

OO O a0
0,1

Figure 3: Another NFA example

In English, this says that for each input symbol, we caleudads before. Then, for each state that we
reach, we find all states that are reachable from it by takimgves.

d. N acceptaviff (5({qo}, w)NF) #0.
The same as before in 11.B.2.b, we've just extended the digimof 5 to handlec moves.

An Example — see figure 3
1 This NFA accept911010:

initial state: {0}
{0}

{0,1}

{0,1,2}

{0,2,3}

{0,1,3,4}

{0,2,4},

2. This NFA rejectsl0111:

initial state: {0}
{0,1}

{0,2}

{0,1,3}

{0,1,2,4}

{0,1,2,3},

Applications of Nondeterminism
Modeling the environment of a program

Avoiding over-specification

R R R

e l=lele e

({0,2,4} N {4} = {4}) = accept)

({0,1,2,3} N {4} = 0) = reject()

