
CpSc 421 Introduction to Theory of Computing September 15, 2006

Today’s lecture: Non-Determinism

I. Closure Properties, continuedII. Two-Tape Finite AutomataIII. Nondeterministic, Finite Automata (NFAs)

Schedule:

Today: Non-Determinism – Read:Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47–52).
Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework 0 due. itemSeptember 20: Equivalence of DFAs and NFAs.
The rest ofSipser 1.2 (i.e. pages 54–63).

September 22: Regular Expressions – Read:Sipser 1.3.
Lecture will cover through Example 1.58 (i.e. pages 63-59).Homework 2 goes out (due Oct. 2).

September 25: Equivalence of DFAa and Regular Expressions.
The rest ofSipser 1.3 (i.e. pages 63–76).
Homework 1 due.

September 27 and beyond: see Sept. 6 notes.

2

a, b, c }

0b,c

a

b

c

a,b,c

a
1

Σ = {

Figure 1:M1: a finite automaton

0

a

1 2c

a

b,c b

a,c

b

Figure 2:M2: another finite automaton

1



I. Closure properties of the regular languages:

A. Machines and languages for our examples (see Figures?? and??.
1. We showed in the Sept. 13 lecture thatM1 accepts all strings where everya is followed eventually by a

b without an interveningc.

2. What language doesM2 recognize?

3. Let L1 = L(M1) andL2 = L(M2).

B. The regular languages are closed under unionfig:xxx.

1. We proved this in the Sept. 13 lecture and notes.

2. Consider the stringsa, ab, bb, andac:

a 6∈ L1, ab ∈ L1, bb ∈ L1, ac 6∈ L1,

a ∈ L2, ab 6∈ L2, bb ∈ L2, ac 6∈ L2.

We conclude thata, ab andbb are inL1 ∪ L2, but thatcc is not. (There are an infinite number of strings
in L1 ∪ L2 and an infinite number of strings that are not inL1 ∪ L2).

C. The regular languages are closed under concatenation
1. What is concatenation?

LetL1 andL2 be two languages. We writeL1 ◦L2 for theconcatenation of languagesL1 andL2. A string,
w is in L1 ◦ L2 iff there are stringsx andy (possibly empty) such thatw = xy, x ∈ L1, andy ∈ L2.
For example,abb ∈ L1 anda ∈ L2. Thereforeabba ∈ L1 ◦ L2 even thoughabba is in neitherL1 nor
L2.

2. Showing that the regular languages are closed under concatenation.
This is a bit more involved than the proof for union. The hard part is figuring out where to break the string.
Given a string,w, it may have many prefixes that are inL1, but only some of them may have corresponding
suffixes inL2.
For example, if we breakabba into ab andba, we see thatab ∈ L1, butba 6∈ L2. How do we find the
“right” place to break the string?
We will see later this lecture that this is an example of wherewe can usenondeterminism. We’ll try to
sneak up on nondeterminism gently by looking at “two-tape” machines first.

D. The regular languages are closed under Kleene star.
1. What is “Kleene star”?

If L is a language, thenw ∈ L∗ iff there is somek ≥ 0 and stringsx1, x2, . . . xk such thatw = x1·x2 · · ·xk,
and all of thexi’s are inL. Note thatL∗ always contains the empty string.

2. An example:

a. The stringsa, aba andacbb are inL2.
b. The following strings are inL∗

2
: ǫ, a, aaba, acbbacbbacbbaba.

c. Show that any string that ends with two or more consecutivea’s is in L∗

2
.

II. Two-Tape Machines

A. Continuing with Concatenation
1. Let’s modifyM1 andM2 to work with the alphabet{a,b,c} × {0,1}.

2. Figure 3 shows how we combine these machine using this extended alphabet.
a. The second component of each symbol says whether it should betreated as part of the string forM1

or part of the string forM2.
b. Figure 3 shows a finite automaton that recognizes the concatenation language modified by using this

extended alphabet. Therefore, this version of concatenation produces a regular language.

2



(*,1)

11

X

(a,2)

(b,2) (b,2)

a,b,cΣ = { } { }0,1

10(c,1)
(b,1)

(b,1) (a,1)

(c,1)(a,1)

12
(*,2)

(*,1)

(*,2)

(a,2)

20(c,2)

(b,2),(c,2)

21

(c,2)

(b,2)

(a,2)

22

(a,2), (c,2)

Figure 3:M1 andM2 “concatenated” by using an extended alphabet

B. Two-tape machines
1. Let’s split the two parts of the input into separate strings.

a. Defining theweave function:

weave(ǫ, ǫ) = ǫ

weave(x1 · c1, x2 · c2) = weave(x1, x2) · (c1, c2)

2. A two-tape finite automaton is a 6-tuple:M = (Q, Σ1, Σ2, δ, q0, F ) where
Q is a finite set of states.

Σ1 andΣ2 are finite sets of symbols.

δ : Q × (Σ1 × Σ2) → Q is the state transition function.

q0 ∈ Q is the initial state.

F ⊆ Q is the set of accepting states.
We say thatM accepts(w1, w2) with w1 ∈ Σ∗

1
andw2 ∈ Σ∗

2
iff length(w1) = length(w2) and the machine

(Q, Σ1 × Σ2, δ, q0, F ) acceptsweave(w1, w2).

3. So far, our two-tape machines are just a slight variation on ordinary finite automata.

4. Hiding the second string.
a. Think about our concatenation example. A stringw is in L1 ◦ L2 iff there is some stringv such that

weave(w, v) is accepted by the machine from figure 3.
b. We can generalize this idea. LetM = (Q, Σ1, Σ2, δ, q0, F ) be a two-tape finite automaton. We’ll

say thatM existentially accepts w ∈ Σ∗

1
iff there exists some string,v ∈ Σ∗

2
such thatM accepts

weave(w, v).
• We’re not saying how we find thev string. We could imagine writing a program that tries all

possible strings of the right length. We might be able to comeup with more efficient schemes.
However, it doesn’t matter. We’ve got a perfectly precise definition, even if we’re not sure how we
could best build the hardware or write the software to implement it.

3



5. Simplifying our two-tape machines.
a. If the user doesn’t have to provide the second input string, why should we ask them to include it in

their description. We can just have multiple arcs out of the same state with the same label. We can
think of these arcs as needing “advice” as to which one to take. Figure 4 shows our example machine
with this simplification.

*

11

X

a,b,cΣ = { }
c
b

b a

ca

12
*

20c

b,c

21

c

b

a

22

a, c

10

a
b

a

b

*
*

Figure 4: The machine from Figure 3 with the second tape“hidden”

b. If we allow multiple arcs out of a state for the same symbol, can we allow a state to have no arcs out
for some symbol?

i.. Where should they go?
ii.. The default destination should make sense for any machine. This suggests that they go to a

permanently accepting state or a permanently rejecting one. Noting all of the clutter in Figures 3
and 4 for arcs to permanently rejecting states, we’ll make these the default.If a state has no outgoing
arc for symbol c, then if the machine reads a c from that state, the machine rejects its input.

iii.. Figure 5 shows our example machine with this simplification.
c. Now, we notice that state 10 has three arcs that go to states fromM2: states 20, 21 and 22.

4



b

11c
b

b a

a

20c

b,c

21

c

b

a

22

a, c

10

a
b

a

Figure 5: The machine from Figure 4 with arcs to permanently rejecting states omitted

5


