
CpSc 421 Introduction to Theory of Computing September 13, 2006

Today’s lecture: Regular Languages

I. Finite Automata and Regular Languages
II. Closure Properties

Schedule:

Today: Regular Languages.
The rest ofSipser 1.1 (i.e. pages 40–47).

September 15: Non-Determinism – Read:Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47–52).
Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework 0 due. itemSeptember 20: Equivalence of DFAs and NFAs.
The rest ofSipser 1.2 (i.e. pages 54–63).

September 22: Regular Expressions – Read:Sipser 1.3.
Lecture will cover through Example 1.58 (i.e. pages 63-59).Homework 2 goes out (due Oct. 2).

September 25: Equivalence of DFAa and Regular Expressions.
The rest ofSipser 1.3 (i.e. pages 63–76).
Homework 1 due.

September 27 and beyond: see Sept. 6 notes.

I. Finite Automata and Regular Languages

A. An example automaton

1. The diagram for this example, see Figure 1.

2. Processing the stringabcaabc

previously current
processed input pending current next

input symbol input state state
ǫ a bcaabc 0 1
a b caabc 1 0

ab c aabc 0 0
abc a abc 0 1
abca a bc 1 1

abcaa b c 1 0
abcaab c ǫ 0 0

abcaabc – ǫ 0

Σ = { a, b, c }

0b,c

a

b

c

a,b,c

a
1 2

Figure 1: A Finite Automaton

The string is accepted.jpp p

1



3. Processing the stringbacab

previously current
processed input pending current next

input symbol input state state
ǫ b acab 0 0
b a cab 0 1

ba c ab 1 2
bac a b 2 2

baca b ǫ 2 2
bacab – ǫ 2

The string is rejected. jpp p

B. Formally Defining Finite Automata

1. The ingredients of a finite automaton
a. A set of states,Q.
b. An input alphabet,Σ, a set of symbols.
c. A transition function:δ : Q × Σ → Q.
d. An initial state,q0.
e. A set of accepting states:F ⊆ Q.

2. We can combine these to make a formal, mathematical description of a finite automaton
a. The combination is a “tuple”

i.. that means lump them all together
ii.. the order of the elements in the tuple matters.

Thus,(Q, Σ, δ, q0, F ) is a finite automaton, but(q0, δ, Q, F, Sigma) is not.
b. The tuple is:(Q, Σ, δ, q0, F ).

3. We say that this is a formal, mathematical definition becauseeverything in the definition has a well-
defined mathematical meaning: sets, functions, sequences,and tuples.

4. Our example machine as a tuple:
• M = (Q, Σ, δ, q0, F ), where

• Q = {0, 1, 2}
• Σ = {a,b,c}
• I’ll define δ(q, c) with the table below:

c

δ(q, c) a b c
0 1 0 0

q

{

1 1 0 2
2 2 2 2

• q0 = 0

• F = {0}

2



C. How can we decide if the formally defined machine accepts as string?
1. Generalizeδ to work on strings

δ(q, ǫ) = q

δ(q, w · c) = δ(δ(q, w), c)

Note how our definition ofδ (for strings) parallels the inductive definition of stringsfrom the Sept. 08
lecture:

A string of elements ofΣ is either

ǫ, the empty string
or w · c, wherec ∈ Σ, andw is a string.

2. Let M = (Q, Σ, δ, q0, F ) be a finite automaton, and letw ∈ Σ∗ be a string.M acceptsw iff δ(q0, w) ∈
F .

3. Our examples again
a. Processing the stringabcaabc.

δ(q0,abcaabc)
= δ(0,abcaabc), q0 = 0
= δ(δ(0,abcaab),c)
= δ(δ(δ(0,abcaa),b),c)
= δ(δ(δ(δ(0,abca),a),b),c)
= δ(δ(δ(δ(δ(0,abc),a),a),b),c)
= δ(δ(δ(δ(δ(δ(0,ab),c),a),a),b),c)
= δ(δ(δ(δ(δ(δ(δ(0,a),b),c),a),a),b),c)
= δ(δ(δ(δ(δ(δ(δ(δ(0, ǫ),a),b),c),a),a),b),c), now we can simplify!
= δ(δ(δ(δ(δ(δ(δ(0,a),b),c),a),a),b),c)
= δ(δ(δ(δ(δ(δ(1,b),c),a),a),b),c)
= δ(δ(δ(δ(δ(0,c),a),a),b),c)
= δ(δ(δ(δ(0,a),a),b),c)
= δ(δ(δ(1,a),b),c)
= δ(δ(1,b),c)
= δ(0,c)
= 0

Thus,δ(q0,abcaabc) ∈ F , and the string is accepted.
b. Processing the stringbacab.

Left as an exercise for the industrious (or bored) reader.

D. Definition of a regular language
1. A regular language is a language that is accepted by a finite automaton.

a. The automaton must accept every string that is in the language, and
b. the automaton must reject every string that is not in the language.
c. We have given precise, mathematical definitions for a finite automaton (i.e. a 5-tuple, ...) and what it

means for a finite automaton to accept a string. Thus, we have formally defined the regular langauges.

2. Keep in mind that languages are sets of strings:
a. There is a finite automaton that accepts every string. It’s language isΣ∗. This machinedoes not

accept accept all languages. That’s because to accept languageL, the machine must reject all strings
thatare not in L.

b. Likewise, there is a finite automaton that rejects eery string. It’s language is∅. This machinedoes
not reject all languages.

c. Every finite automaton recognizes exactly one language.

3



II. Closure Properties

A. What is a closure property?

1. Formal definition
a. Let A be a set, and◦ be an operation on elements ofA.
b. We say thatA is closed under◦ iff for all x, y ∈ A, it is the case thatx ◦ y is defined, andx ◦ y is an

element ofA.

2. Examples
a. The natural numbers are closed under addition and multiplication.
b. The natural numbers are not closed under subtraction.
c. The integers are closed under subtraction.
d. The non-zero rational numbers are closed under division.
e. The non-zero rational numbers are not closed under square root.

3. Why we care.
a. Let’s say we have somez that we want to prove to be an element of some setA. If we can find

x, y ∈ A such thatz = x ◦ y, andA is closed under◦, then we’ve shown thatz ∈ A. I’ll give an
example shortly.

b. Conversely, we might have somez that we know isnot an element ofA, somex that we know is an
element ofA, and somey for which we are unsure. If we can show thatx ◦ y = z, then we have shown
thaty 6∈ A. Here’s an example:
• Show that(

√
2 +

√
3) is not rational.

• Proof:
1. LetQ denote the rational numbers.
2.

√
2 6∈ Q

Sipser Thm. 0.24, p. 22.
3. Given an natural number,n, either

√
n is either a natural number or it is irrational.

A generalization of Thm. 0.24 fromSipser.

4. ((
√

2 +
√

3) ∈ Q)

⇔ ((
√

2 +
√

3)2 ∈ Q), rationals closed under∗
5. ⇔ (2 + 2

√
2
√

3 + 3) ∈ Q), rewrite((
√

2 +
√

3)2

6. ⇔ 2
√

2
√

3 ∈ Q), rationals closed under+
7. ⇔

√
2
√

3 ∈ Q), rationals closed under∗
8. ⇔

√
6 ∈ Q), rewrite

√
2
√

3

9. ⇔ False,
√

6 6∈ Q, see step 3

B. Closure properties of the regular languages:

1. The regular languages are closed under union
a. Proof:

2

δ1 D Q 1f

δ2

OR−Gate

accept

D Q 2f

in

M

M1

4



b. Another proof:
We can construct the 5-tuple for the finite automaton corresponding to the circuit above.
Let L1 and L2 be regular languages. BecauseL1 is regular, it is recognized by some finite au-
tomaton. LetM1 = (Q1, Σ, δ1, q0,1, F1) be an automaton that recognizesL1. Likewise, letM2 =
(Q2, Σ, δ2, q0,2, F2). Note that both machines must have the same alphabet, because δ1 andδ2 must
be defined over the same alphabet (and I have no idea why Sipserclaimed that the alphabets could
be different (p. 46, step 2 of his construction – he may have had a proof with NFAs in mind, but we
haven’t seen NFAs yet). I’ll now construct a machineM = (Q, Σ, δ, q0, F ) such thatL(M) = L1∪L2.
BecauseM is a finite automaton,L(M) is regular, thereforeL1 ∪ L2 is regular.

Q: Each state ofM consists of a state fromM1 and a state fromM2. We represent such combinations
with a Cartesian product:Q = Q1 × Q2. Note that the number of states ofM is the product of the
number of states ofM1 and the number of states ofM2. This allowsM to be in any state-pair from
M1 andM2.
Σ: The same alphabet as forM1 andM2.
δ: M makes moves that correspond to bothM1 andM2 moving in parallel. Thus, theQ1 component
of M ’s state changes according toδ1, and theQ2 component changes according toδ2. We can write
this as the formula:

δ((q1, q2), c) = (δ1(q1, c), δ2(q2, c))

q0: M starts in the initial state for each machine:

q0 = (q0,1, q0,2)

F : M accepts if eitherM1 or M2 accepts:

F = {(q1, q2) ∈ Q | (q1 ∈ F1) ∨ (q2 ∈ F2)}

Sipser states that the correctness of this construction is obvious. That’s good enough for me. If you
want a more formal proof, we can prove by induction that for any stringw ∈ Σ∗:

δ(q0, w) = (δ1(q0,1, w), δ2(q0,2, 2))

Here we go:
Casew = ǫ:

δ(q0, w) = δ(q0, ǫ), w = ǫ

= q0, def.δ(–, ǫ)
= (q0,1, q0,2), def.q0

= (δ1(q0,1, ǫ), δ2(q0,2, ǫ)), def.δi(–, ǫ)

Casew = x · c:

δ(q0, w) = δ(q0, x · c), w = x · c
= δ(δ(q0, x), c), def.δ(–, x · c)
= δ(δ((q0,1, q0,2), x), c), def.q0

= δ((δ1(q0,1, x), δ2(q0,2, x)), c), induction hypothesis
= (δ1(δ1(q0,1, x), c), δ2(δ2(q0,2, x), c)), def.δ
= (δ1(q0,1, x · c), δ2(q0,2, x · c)), def.δi(–, x · c)
= (δ1(q0,1, w), δ2(q0,2, w)), w = x · c

Now we can show thatL(M) = L1 ∪ L2.
L(M) ⊆ L1 ∪ L2: Let w ∈ L(M). That meansδ(q0, w) ∈ F . Using the result of our induction
proof above, we get(δ1(q0,1, w), δ2(q0.2, w)) ∈ F . From the definition ofF , we conclude that either
δ1(q0,1, w) ∈ F1, or δ2(q0,2, w) ∈ F2. In the first case,w ∈ L(M1) = L1, and in the second case,
w ∈ L(M2) = L2. Either way,w ∈ L1 ∪ L2 as required.

5



b

0

a

1 2c

a

b,c b

a,c

Figure 2:M2: another finite automaton

L1 ∪ L2 ⊆ L(M): Let w ∈ L1 ∪ L2. Assume thatw ∈ L1, the other case is equivalent. This
means thatw ∈ L(M1) which means thatδ1(q0,1, w) ∈ F1. From the induction proof above,
we haveδ(q0, w) = (δ1(q0,1, w), δ2(q0,2, w)). We just showed thatδ1(q0,1, w) ∈ F1; therefore,
(δ1(q0,1, w), δ2(q0,2, w)) ∈ F . This means thatM acceptsw. In other words,w ∈ L(M) as
required.

c. An example:
Let L1 be the language recognized by the finite automaton shown in Figure 1. Likewise, letM2 be the
finite automaton shown in Figure 2, and letL2 = L(M2). LanguagesL1 andL2 are regular because
they are recognized by finite automata. Thus, we know thatL1 ∪ L2 is regular because the regular
languages are closed under union. We don’t have to figure out how to draw an automaton forL1 ∪ L2,
we know that it exists. Thus, this saves us a bunch of work.

2. The regular languages are closed under concatenation
a. What is concatenation?

Let L1 andL2 be two languages. We writeL1 ◦ L2 for theconcatenation of languagesL1 andL2. A
string,w is in L1 ◦ L2 iff there are stringsx andy (possibly empty) such thatw = xy, x ∈ L1, and
y ∈ L2.

b. Showing that the regular languages are closed under concatenation.
This is a bit more involved than the proof for union. Basically, we have to construct a machine that
finds a prefix ofw that is inL1 such that the rest of the string is inL2. The problem is that there may
be more than one such choice. For example, letL1 andL2 be defined as in the example for union.
Let w = ababcbabbabbabba. If we let x = ababcb andy = abbabbabba, we can show that
x ∈ L1 andy ∈ L2. On the other hand, if we tryx = ab andy = abcbabbabbabba we’ll find that
x ∈ L1 buty 6∈ L2. You can find other ways to break upw that work and others that don’t work.
At first it might seem that a machine to recognizeL1 ◦ L2 must keep track of all possible places to
breakw. For an aribitrarily longw, this means keeping track of an arbitrary amount of information,
which isn’t longer finite state.
The solution is to make a machine whose state keeps track of what stateM1 would be in if we are
still readingx and all the possible states thatM2 could be in if we’ve switched to readingy. Because
M2 has a finite set of states, there are only a finite set of possible combinations. Of course, ifM2 has
n2 states, then there are2n2 possible combinations, but that is still finite. So, we couldbuild a the
following machine:

Q = Q1 × 2Q2 .
Σ the same alphabet as forM1 andM2.
δ((q1P2), c) = (δ1(q1, c), {p′‖(∃p ∈ P2. p′ = δ2(p, c)) ∨ ((p′ = q0,2) ∧ (δ1(q1, c) ∈ F1))}).
That’s a big formula. Theδ1(q1, c) part keeps track of the state ofM1. if M1 reaches an accepting
state (i.e. (δ1(q1, c) ∈ F1)), then we includeq0,2 in the set of states ofQ2 that we are tracking.
For each state ofQ2 that we are tracking, we include its successor according toδ2 (thats what the
p′ = δ2(p, c) stuff is about.
q0 = (q0,1, {q0,2 | if q0,1 ∈ F1}).

6



That means that we startM1 in its initial state. If the initial state ofM1 is an accepting state, we start
M2 right away. Otherwise, we set the initial possible states ofM2 to the empty set.
F = Q1 × 2F

2
.

We accept if there’s anyway thatM2 could be in an accepting state.
We could go on and prove this construction correct, but I won’t bother. The idea of keeping track
of the states that a finite automaton could be in is the centralidea behind NFAs (non-deterministic
finite automata). We’ll start on NFAs on Friday. Once we’ve introduced NFAs, showing closure under
concatention is straightforward.

3. The regular languages are closed under Kleene star. IfL is a language, thenw ∈ L∗ iff there is some
k ≥ 0 and stringsx1, x2, . . . xk such thatw = x1 · x2 · · ·xk, and all of thexi’s are inL. Note thatL∗

always contains the empty string.

7


