CpSc 421 Introduction to Theory of Computing

Today’s lecture: Regular Languages

|. Finite Automata and Regular Languages
I1. Closure Properties

Schedule:

Today: Regular Languages.
The rest of9pser 1.1 (i.e. pages 40-47).

September 15: Non-Determinism — ReadSpser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47-52).
Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).

September 0862

Homework 0 due. itei@eptember 20: Equivalence of DFAs and NFAs.

The rest of9pser 1.2 (i.e. pages 54—-63).
September 22: Regular Expressions — Reafpser 1.3.

Lecture will cover through Example 1.58 (i.e. pages 63-bf@)mework 2 goes out (due Oct. 2).

September 25: Equivalence of DFAa and Regular Expressions.
The rest ofSipser 1.3 (i.e. pages 63—76).
Homework 1 due.

September 27 and beyond: see Sept. 6 notes.

l. Finite Automata and Regular Languages

A. An example automaton
1 The diagram for this example, see Figure 1.
2. Processing the stringbcaabc
previously | current
processed input | pending | current| next
input symbol input state | state s={a, b, c}
€ a bcaabc 0 1
a b caabc 1 0 a C
ab c aabc 0 0 b, ¢ C @5\@)& b, ¢
abc a abc 0 1 N~
abca a bc 1 1 b a
abcaa b c 1 0 Figure 1: A Finite Automaton
abcaab c € 0 0
abcaabc - € 0

The string is accepted:)

3. Processing the stringacab

previously| current
processed input | pending| current| next
input symbol| input state | state
€ b acab 0 0
b a cab 0 1
ba c ab 1 2
bac a b 2 2
baca b € 2 2
bacab - € 2
The string is rejecteds)
Formally Defining Finite Automata
1 The ingredients of a finite automaton

A set of states().

An input alphabety, a set of symbols.
A transition function:d : Q x ¥ — Q.
An initial state,qq.

A set of accepting stateg” C Q.

2. We can combine these to make a formal, mathematical deseript a finite automaton
The combination is a “tuple”
i.. that means lump them all together
ii.. the order of the elements in the tuple matters.
Thus,(Q, X, 4, g0, F') is a finite automaton, by, 6, Q, F, Sigma) is not.
b. The tuple is:(@Q, %, 4, qo, F).
3. We say that this is a formal, mathematical definition becasgything in the definition has a well-
defined mathematical meaning: sets, functions, sequesicgsuples.

4, Our example machine as a tuple:
M =(Q,%,9,q, F), where

®eLo T

o

e Q@=1{0,1,2}
e Y ={ab,c}
e [I'lldefine é(g, ¢) with the table below:
Cc
/—/%
é(¢gc)|a b ¢
0|1 0 O
q{ 111 0 2
212 2 2
e g =0
o F={0}

How can we decide if the formally defined machine acceptsragst
1. Generalize) to work on strings

o(g.€) = ¢
5(Qa w - C) = 6(6(q7 U]), C)

Note how our definition ob (for strings) parallels the inductive definition of strinfyem the Sept. 08

lecture:
A string of elements of is either

€, the empty string
or w-c¢, wherece 3, andw is a string.

2. Let M = (Q, X%, 9, g0, F) be afinite automaton, and let € ¥* be a stringM acceptsv iff §(go, w) €

F.

3. Our examples again
a. Processing the stringbcaabc.

0(go,abcaabc)

= §(0,abcaabc), g =10
= §(6(0,abcaab),c)

= §(6(6(0,abcaa),b),c)

= 4(6(6(6(0,abca),a),b),c)

= §(6(6(6(6(0,abc),a),a),b),c)

= 4(6(6(6(6(6(0,ab),c),a),a),b),c)

= §(3(6(5(5(6(5(0,a),b),c),a),a),b),c)

= 6(0(8(6(0(8(6(6 (€),a),b),c),a),a),b),c), now we can simplify!
= §(3(6(5(5(6(5(0,a),b),c),a),a),b),c)

= 5(5(5(5(5(5(1,b ,c),a),a),b),c)

= 0(6(6(6(6(0,c),a),a),b),c)

= 6(6(6(6(0,a),a),h),c)

= 6(6(6(1,a),b),c)

= 0(6(1,b),c)

= 4(0,c)

= 0

Thus,d(qo, abcaabc) € F, and the string is accepted.
b. Processing the stringacab.
Left as an exercise for the industrious (or bored) reader.

Definition of a regular language
1 A regular language is a language that is accepted by a finitereaton.

a. The automaton must accept every string that is in the larguagl
b. the automaton must reject every string that is not in thedageg.
C. We have given precise, mathematical definitions for a finitematon (i.e. a 5-tuple, ...) and what it
means for a finite automaton to accept a string. Thus, we laeally defined the regular langauges.
2. Keep in mind that languages are sets of strings:

a. There is a finite automaton that accepts every string. ltiglage is:*.

This machinedoes not

accept accept all languages. That's because to acceptagaguthe machine must reject all strings

thatarenot in L.

b. Likewise, there is a finite automaton that rejects eery gtritis language i$). This machinedoes

not reject all languages.
C. Every finite automaton recognizes exactly one language.

. Closure Properties

A. What is a closure property?

1 Formal definition
a. Let A be a set, and be an operation on elements 4f
b. We say thatd is closed undes iff for all =,y € A, itis the case that o y is defined, and: o y is an
element ofA.

2. Examples

The natural numbers are closed under addition and mulkitdia.
The natural numbers are not closed under subtraction.

The integers are closed under subtraction.

The non-zero rational numbers are closed under division.

The non-zero rational numbers are not closed under squate ro

3. Why we care.

a. Let's say we have some that we want to prove to be an element of some4etf we can find
x,y € Asuchthat: = x o y, and A is closed undes, then we've shown that € A. I'll give an
example shortly.

b. Conversely, we might have soméhat we know isot an element ofd, somex that we know is an
element of4, and some for which we are unsure. If we can show thaty = z, then we have shown
thaty ¢ A. Here's an example:

e Show that(y/2 + /3) is not rational.

PO T

e Proof:
1. LetQ denote the rational numbers.
2. V2¢Q

Spser Thm. 0.24, p. 22.
3. Given an natural numbert, either,/n is either a natural number or it is irrational.
A generalization of Thm. 0.24 fror@pser.

4. (V2+V3)€Q)

& (V2+V3)2€Q), rationals closed under
5. & (242v2V3+3)€Q), rewrite((v2+v/3)?
6. < 2v2V3¢cQ), rationals closed under
7. & V2/3€Q), rationals closed under
8. & V6€Q), rewrite /2v/3
9. < False V6 ¢ Q, see step 3
B. Closure properties of the regular languages:
1 The regular languages are closed under union
a. Proof:
I Ml

1 “7)>—~ accept

OR-Gate

b.

Another proof:
We can construct the 5-tuple for the finite automaton cooeding to the circuit above.
Let L; and L, be regular languages. Becaukg is regular, it is recognized by some finite au-
tomaton. LetM; = (Q1,%,d1,4q0,1, F1) be an automaton that recognizes. Likewise, letM,; =
(Q2,%,02,q0,2, F»). Note that both machines must have the same alphabet, lsataasdj, must
be defined over the same alphabet (and | have no idea why Silasered that the alphabets could
be different (p. 46, step 2 of his construction — he may hawkahproof with NFAs in mind, but we
haven't seen NFAs yet). I'll now construct a machie= (Q, %, 6, o, F') suchthat.(M) = LU Ls.
BecauséV! is a finite automatonl, (M) is regular, thereforé, U Lo is regular.
Q: Each state of\f consists of a state frof/; and a state from/,. We represent such combinations
with a Cartesian product) = @1 x Q2. Note that the number of states &f is the product of the
number of states af/; and the number of states &f,. This allows)M to be in any state-pair from
My andMQ.
3: The same alphabet as fof; and M.
0: M makes moves that correspond to bath and M, moving in parallel. Thus, th€, component
of M’s state changes accordingdg and the), component changes accordingito We can write
this as the formula:
6((q1,q2),¢) = (d1(q1,¢),02(q2,0))

qo: M starts in the initial state for each machine:
Qg = (%,1#10,2)
F: M accepts if eithed/; or M5 accepts:
F = {(q1,02) €Q|(q1 € F1) V(g2 € F2)}

Sipser states that the correctness of this constructiobvi®os. That's good enough for me. If you
want a more formal proof, we can prove by induction that for stningw € >*:

5((]07 U)) = (51 (QO,I 3 ’U}), 62 (QO,% 2))
Here we go:
Casew = «:
5((]07 ’LU) = 5((]07 6)7 w =€
= qo, def.§(—¢)
= (go,1,90,2), def.qo

- (51 (qO,la 6)7 52((]0,27 6))1 def 51(_1 6)
Casew =z - ¢

d(qo,w) = 6(qo,x-c), w=zx-c
= 06(0(qo,7),c), def.d(—z - ¢)
= 6(5((qo,1,90,2),),), def. qo
= 6((61(q0,1, %), 02(q0,2, 7)), ©), induction hypothesis
= (61(61(qo0,1,7),¢),02(02(qo,2,7),c)), def.d
= (61(qo,1,2 - ¢),02(qo,2, % -), def.§;(— x - ¢)
= (61(qo,1,w), 02(qo,2, w)), w=zx-c

Now we can show thal (M) = L1 U Lo.
L(M) C L1 U Ly: Letw € L(M). That means$(qo,w) € F. Using the result of our induction
proof above, we g1 (go,1, w), d2(go.2, w)) € F. From the definition of”’, we conclude that either
01(qo,1,w) € F1, 0rda(qo2, w) € Fy. In the first casew € L(M;) = L4, and in the second case,
w € L(Ms) = L. Either wayw € L, U Lo as required.

2.

a.

Figure 2: Ms: another finite automaton

Ly ULy C L(M): Letw € Ly U Lo. Assume thatv € L4, the other case is equivalent. This
means thatv € L(M;) which means thad; (¢0,1,w) € Fi. From the induction proof above,
we haved(qo, w) = (61(qgo,1,w),d2(qo.2, w)). We just showed thai;(¢o1,w) € Fi; therefore,
(01(go,1,w), 02(qo,2,w)) € F. This means thaf\/ acceptsw. In other wordsw € L(M) as
required.
An example:
Let L; be the language recognized by the finite automaton showrgir&il. Likewise, lef\/; be the
finite automaton shown in Figure 2, and Iet = L(M-). Languaged.; and L, are regular because
they are recognized by finite automata. Thus, we know fhat! L is regular because the regular
languages are closed under union. We don'’t have to figureamutd draw an automaton fdr; U Lo,
we know that it exists. Thus, this saves us a bunch of work.

The regular languages are closed under concatenation
What is concatenation?
Let I; and L, be two languages. We write; o L, for the concatenation of languaged.; andL,. A
string, w is in Ly o L4 iff there are stringgs: andy (possibly empty) such that = zy, + € L4, and
Yy e LQ.
Showing that the regular languages are closed under coratiin.
This is a bit more involved than the proof for union. Basigalle have to construct a machine that
finds a prefix ofw that is in L; such that the rest of the string is In. The problem is that there may
be more than one such choice. For example/Lletand L, be defined as in the example for union.
Letw = ababcbabbabbabba. If we letz = ababcb andy = abbabbabba, we can show that
x € Ly andy € Lo. On the other hand, if we try = ab andy = abcbabbabbabba we’'ll find that
x € Ly buty & L. You can find other ways to break upthat work and others that don’t work.
At first it might seem that a machine to recognizeo L, must keep track of all possible places to
breakw. For an aribitrarily longw, this means keeping track of an arbitrary amount of inforomat
which isn’t longer finite state.
The solution is to make a machine whose state keeps track af state)/; would be in if we are
still readingx and all the possible states thek, could be in if we've switched to reading Because
M, has a finite set of states, there are only a finite set of pa@ssdohbinations. Of course, /> has
no states, then there aB¥2 possible combinations, but that is still finite. So, we cobldd a the
following machine:
Q= Q1 x 2%,
Y] the same alphabet as fof; and M.
6((q1P2),c) = (61(qu,), {P'l|(3p € Po. p" = 02(p,) V ((p = qo0,2) A (d1(q1, ¢) € F1))}).
That's a big formula. Thé;(q¢1, ¢) part keeps track of the state df;. if M; reaches an accepting
state (i.e.(d1(¢q1,¢) € F1)), then we includey, » in the set of states af), that we are tracking.
For each state of), that we are tracking, we include its successor according {ehats what the
p’ = da2(p, ¢) stuff is about.
g0 = (qo,1,{qo.2 | if qo,1 € F1}).

That means that we stalf; in its initial state. If the initial state of/; is an accepting state, we start
M, right away. Otherwise, we set the initial possible stateAd/gfto the empty set.
F= Ql X 22F
We accept if there’s anyway thaf, could be in an accepting state.
We could go on and prove this construction correct, but | wbother. The idea of keeping track
of the states that a finite automaton could be in is the ceittea behind NFAs (non-deterministic
finite automata). We’'ll start on NFAs on Friday. Once we'veaduced NFAs, showing closure under
concatention is straightforward.
3. The regular languages are closed under Kleene stdr.idfa language, them € L* iff there is some

k > 0 and stringsey, xo, . . .z such thatw = 1 - x5 - - -z, and all of thex;’s are in L. Note thatl.*
always contains the empty string.

