Today's lecture: Regular Languages

I. Finite Automata and Regular Languages
II. Closure Properties

Schedule:

Today: Regular Languages.
The rest of Sipser 1.1 (i.e. pages 40-47).
September 15: Non-Determinism - Read: Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47-52). Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework 0 due. itemSeptember 20: Equivalence of DFAs and NFAs.
The rest of Sipser 1.2 (i.e. pages 54-63).
September 22: Regular Expressions - Read: Sipser 1.3.
Lecture will cover through Example 1.58 (i.e. pages 63-59). Homework 2 goes out (due Oct. 2).
September 25: Equivalence of DFAa and Regular Expressions.
The rest of Sipser 1.3 (i.e. pages 63-76).
Homework 1 due.
September 27 and beyond: see Sept. 6 notes.
I. Finite Automata and Regular Languages
A. An example automaton

1. The diagram for this example, see Figure 1.
2. Processing the string $a b c a a b c$

previously processed input	current input symbol	pending input	current state	next state
ϵ	a	bcaabc	0	1
a	b	caabc	1	0
ab	c	aabc	0	0
abc	a	abc	0	1
abca	a	bc	1	1
abcaa	b	c	1	0
abcaab	c	ϵ	0	0
abcaabc	-	ϵ	0	

$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

Figure 1: A Finite Automaton

The string is accepted.
3. Processing the string bacab

previously processed input	current input symbol	pending input	current state	next state
$\mathrm{\epsilon}$	b	acab	0	0
b	a	cab	0	1
ba	c	ab	1	2
bac	a	b	2	2
baca	b	ϵ	2	2
bacab	-	ϵ	2	

The string is rejected. \because
B. Formally Defining Finite Automata

1. The ingredients of a finite automaton
a. A set of states, Q.
b. An input alphabet, Σ, a set of symbols.
c. A transition function: $\delta: Q \times \Sigma \rightarrow Q$.
d. An initial state, q_{0}.
e. A set of accepting states: $F \subseteq Q$.
2. We can combine these to make a formal, mathematical description of a finite automaton
a. The combination is a "tuple"
i.. that means lump them all together
ii.. the order of the elements in the tuple matters.

Thus, $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a finite automaton, but $\left(q_{0}, \delta, Q, F, S i g m a\right)$ is not.
b. The tuple is: $\left(Q, \Sigma, \delta, q_{0}, F\right)$.
3. We say that this is a formal, mathematical definition because everything in the definition has a welldefined mathematical meaning: sets, functions, sequences, and tuples.
4. Our example machine as a tuple:

- $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where
- $Q=\{0,1,2\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- I'll define $\delta(q, c)$ with the table below:

- $q_{0}=0$
- $F=\{0\}$
C. How can we decide if the formally defined machine accepts as string?

1. Generalize δ to work on strings

$$
\begin{aligned}
\delta(q, \epsilon) & =q \\
\delta(q, w \cdot c) & =\delta(\delta(q, w), c)
\end{aligned}
$$

Note how our definition of δ (for strings) parallels the inductive definition of strings from the Sept. 08 lecture:

A string of elements of Σ is either

	ϵ, \quad the empty string
or $\quad w \cdot c$,	where $c \in \Sigma$, and w is a string.

2. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton, and let $w \in \Sigma^{*}$ be a string. M accepts w iff $\delta\left(q_{0}, w\right) \in$ F.
3. Our examples again
a. Processing the string abcaabc.

$$
\begin{aligned}
& \delta\left(q_{0}, \mathrm{abcaabc}\right) \\
& \quad=\delta(0, \mathrm{abcaabc}), \quad q_{0}=0 \\
& \quad=\delta(\delta(0, \mathrm{abcaab}), \mathrm{c}) \\
& \quad=\delta(\delta(\delta(0, \mathrm{abcaa}), \mathrm{b}), \mathrm{c}) \\
& \quad=\delta(\delta(\delta(\delta(0, \mathrm{abca}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \quad=\delta(\delta(\delta(\delta(\delta(0, \mathrm{abc}), \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \quad=\delta(\delta(\delta(\delta(\delta(\delta(0, \mathrm{ab}), \mathrm{c}), \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \quad=\delta(\delta(\delta(\delta(\delta(\delta(\delta(0, \mathrm{a}), \mathrm{b}), \mathrm{c}), \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \quad=\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(0, \epsilon), \mathrm{a}), \mathrm{b}), \mathrm{c}), \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}), \quad \text { now we can simplify! } \\
& \quad=\delta(\delta(\delta(\delta(\delta(\delta(\delta(0, \mathrm{a}), \mathrm{b}), \mathrm{c}), \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \\
& =\delta(\delta(\delta(\delta(\delta(\delta(1, \mathrm{~b}), \mathrm{c}), \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \\
& =\delta(\delta(\delta(\delta(\delta(0, \mathrm{c}), \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \\
& =\delta(\delta(\delta(\delta(0, \mathrm{a}), \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \\
& =\delta(\delta(\delta(1, \mathrm{a}), \mathrm{b}), \mathrm{c}) \\
& \\
& =\delta(\delta(1, \mathrm{~b}), \mathrm{c}) \\
& \\
& =\delta(0, \mathrm{c})
\end{aligned}
$$

Thus, $\delta\left(q_{0}, \mathrm{abcaabc}\right) \in F$, and the string is accepted.
b. Processing the string bacab.

Left as an exercise for the industrious (or bored) reader.
D. Definition of a regular language

1. A regular language is a language that is accepted by a finite automaton.
a. The automaton must accept every string that is in the language, and
b. the automaton must reject every string that is not in the language.
c. We have given precise, mathematical definitions for a finite automaton (i.e. a 5-tuple, ...) and what it means for a finite automaton to accept a string. Thus, we have formally defined the regular langauges.
2. Keep in mind that languages are sets of strings:
a. There is a finite automaton that accepts every string. It's language is Σ^{*}. This machine does not accept accept all languages. That's because to accept language L, the machine must reject all strings that are not in L.
b. Likewise, there is a finite automaton that rejects eery string. It's language is \emptyset. This machine does not reject all languages.
c. Every finite automaton recognizes exactly one language.

II. Closure Properties

A. What is a closure property?

1. Formal definition
a. Let A be a set, and \circ be an operation on elements of A.
b. We say that A is closed under \circ iff for all $x, y \in A$, it is the case that $x \circ y$ is defined, and $x \circ y$ is an element of A.
2. Examples
a. The natural numbers are closed under addition and multiplication.
b. The natural numbers are not closed under subtraction.
c. The integers are closed under subtraction.
d. The non-zero rational numbers are closed under division.
e. The non-zero rational numbers are not closed under square root.
3. Why we care
a. Let's say we have some z that we want to prove to be an element of some set A. If we can find $x, y \in A$ such that $z=x \circ y$, and A is closed under \circ, then we've shown that $z \in A$. I'll give an example shortly.
b. Conversely, we might have some z that we know is not an element of A, some x that we know is an element of A, and some y for which we are unsure. If we can show that $x \circ y=z$, then we have shown that $y \notin A$. Here's an example:

- Show that $(\sqrt{2}+\sqrt{3})$ is not rational.
- Proof:

1. Let \mathbb{Q} denote the rational numbers.
2. $\sqrt{2} \notin \mathbb{Q}$

Sipser Thm. 0.24, p. 22.
3. Given an natural number, n, either \sqrt{n} is either a natural number or it is irrational. A generalization of Thm. 0.24 from Sipser.
4. $((\sqrt{2}+\sqrt{3}) \in \mathbb{Q})$

$$
\Leftrightarrow \quad\left((\sqrt{2}+\sqrt{3})^{2} \in \mathbb{Q}\right), \quad \text { rationals closed under } *
$$

5. $\Leftrightarrow \quad(2+2 \sqrt{2} \sqrt{3}+3) \in \mathbb{Q})$,
rewrite $\left((\sqrt{2}+\sqrt{3})^{2}\right.$
6. $\Leftrightarrow 2 \sqrt{2} \sqrt{3} \in \mathbb{Q})$,
7. $\Leftrightarrow \sqrt{2} \sqrt{3} \in \mathbb{Q})$,
rationals closed under +
rationals closed under *
8. $\Leftrightarrow \sqrt{6} \in \mathbb{Q})$, rewrite $\sqrt{2} \sqrt{3}$
9. \Leftrightarrow False,
$\sqrt{6} \notin \mathbb{Q}$, see step 3
B. Closure properties of the regular languages:
10. The regular languages are closed under union
a. Proof:

b. Another proof:

We can construct the 5-tuple for the finite automaton corresponding to the circuit above.
Let L_{1} and L_{2} be regular languages. Because L_{1} is regular, it is recognized by some finite automaton. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0,1}, F_{1}\right)$ be an automaton that recognizes L_{1}. Likewise, let $M_{2}=$ $\left(Q_{2}, \Sigma, \delta_{2}, q_{0,2}, F_{2}\right)$. Note that both machines must have the same alphabet, because δ_{1} and δ_{2} must be defined over the same alphabet (and I have no idea why Sipser claimed that the alphabets could be different (p .46 , step 2 of his construction - he may have had a proof with NFAs in mind, but we haven't seen NFAs yet). I'll now construct a machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=L_{1} \cup L_{2}$. Because M is a finite automaton, $L(M)$ is regular, therefore $L_{1} \cup L_{2}$ is regular.
Q : Each state of M consists of a state from M_{1} and a state from M_{2}. We represent such combinations with a Cartesian product: $Q=Q_{1} \times Q_{2}$. Note that the number of states of M is the product of the number of states of M_{1} and the number of states of M_{2}. This allows M to be in any state-pair from M_{1} and M_{2}.
Σ : The same alphabet as for M_{1} and M_{2}.
$\delta: M$ makes moves that correspond to both M_{1} and M_{2} moving in parallel. Thus, the Q_{1} component of M 's state changes according to δ_{1}, and the Q_{2} component changes according to δ_{2}. We can write this as the formula:

$$
\delta\left(\left(q_{1}, q_{2}\right), c\right)=\left(\delta_{1}\left(q_{1}, c\right), \delta_{2}\left(q_{2}, c\right)\right)
$$

$q_{0}: M$ starts in the initial state for each machine:

$$
q_{0}=\left(q_{0,1}, q_{0,2}\right)
$$

$F: M$ accepts if either M_{1} or M_{2} accepts:

$$
F=\left\{\left(q_{1}, q_{2}\right) \in Q \mid\left(q_{1} \in F_{1}\right) \vee\left(q_{2} \in F_{2}\right)\right\}
$$

Sipser states that the correctness of this construction is obvious. That's good enough for me. If you want a more formal proof, we can prove by induction that for any string $w \in \Sigma^{*}$:

$$
\delta\left(q_{0}, w\right)=\left(\delta_{1}\left(q_{0,1}, w\right), \delta_{2}\left(q_{0,2}, 2\right)\right)
$$

Here we go:
Case $w=\epsilon$:

$$
\begin{aligned}
\delta\left(q_{0}, w\right) & =\delta\left(q_{0}, \epsilon\right), & & w=\epsilon \\
& =q_{0}, & & \text { def. } \delta(-, \epsilon) \\
& =\left(q_{0,1}, q_{0,2}\right), & & \text { def. } q_{0} \\
& =\left(\delta_{1}\left(q_{0,1}, \epsilon\right), \delta_{2}\left(q_{0,2}, \epsilon\right)\right), & & \text { def. } \delta_{i}(-, \epsilon)
\end{aligned}
$$

Case $w=x \cdot c$:

$$
\begin{aligned}
\delta\left(q_{0}, w\right) & =\delta\left(q_{0}, x \cdot c\right), & & w=x \cdot c \\
& =\delta\left(\delta\left(q_{0}, x\right), c\right), & & \text { def. } \delta(-, x \cdot c) \\
& =\delta\left(\delta\left(\left(q_{0,1}, q_{0,2}\right), x\right), c\right), & & \text { def. } q_{0} \\
& =\delta\left(\left(\delta_{1}\left(q_{0,1}, x\right), \delta_{2}\left(q_{0,2}, x\right)\right), c\right), & & \text { induction hypothesis } \\
& =\left(\delta_{1}\left(\delta_{1}\left(q_{0,1}, x\right), c\right), \delta_{2}\left(\delta_{2}\left(q_{0,2}, x\right), c\right)\right), & & \text { def. } \delta \\
& =\left(\delta_{1}\left(q_{0,1}, x \cdot c\right), \delta_{2}\left(q_{0,2}, x \cdot c\right)\right), & & \text { def. } \delta_{i}(-, x \cdot c) \\
& =\left(\delta_{1}\left(q_{0,1}, w\right), \delta_{2}\left(q_{0,2}, w\right)\right), & & w=x \cdot c
\end{aligned}
$$

Now we can show that $L(M)=L_{1} \cup L_{2}$.
$L(M) \subseteq L_{1} \cup L_{2}$: Let $w \in L(M)$. That means $\delta\left(q_{0}, w\right) \in F$. Using the result of our induction proof above, we get $\left(\delta_{1}\left(q_{0,1}, w\right), \delta_{2}\left(q_{0.2}, w\right)\right) \in F$. From the definition of F, we conclude that either $\delta_{1}\left(q_{0,1}, w\right) \in F_{1}$, or $\delta_{2}\left(q_{0,2}, w\right) \in F_{2}$. In the first case, $w \in L\left(M_{1}\right)=L_{1}$, and in the second case, $w \in L\left(M_{2}\right)=L_{2}$. Either way, $w \in L_{1} \cup L_{2}$ as required.

Figure 2: M_{2} : another finite automaton
$L_{1} \cup L_{2} \subseteq L(M)$: Let $w \in L_{1} \cup L_{2}$. Assume that $w \in L_{1}$, the other case is equivalent. This means that $w \in L\left(M_{1}\right)$ which means that $\delta_{1}\left(q_{0,1}, w\right) \in F_{1}$. From the induction proof above, we have $\delta\left(q_{0}, w\right)=\left(\delta_{1}\left(q_{0,1}, w\right), \delta_{2}\left(q_{0,2}, w\right)\right)$. We just showed that $\delta_{1}\left(q_{0,1}, w\right) \in F_{1}$; therefore, $\left(\delta_{1}\left(q_{0,1}, w\right), \delta_{2}\left(q_{0,2}, w\right)\right) \in F$. This means that M accepts w. In other words, $w \in L(M)$ as required.
c. An example:

Let L_{1} be the language recognized by the finite automaton shown in Figure 1. Likewise, let M_{2} be the finite automaton shown in Figure 2, and let $L_{2}=L\left(M_{2}\right)$. Languages L_{1} and L_{2} are regular because they are recognized by finite automata. Thus, we know that $L_{1} \cup L_{2}$ is regular because the regular languages are closed under union. We don't have to figure out how to draw an automaton for $L_{1} \cup L_{2}$, we know that it exists. Thus, this saves us a bunch of work.
2. The regular languages are closed under concatenation
a. What is concatenation?

Let L_{1} and L_{2} be two languages. We write $L_{1} \circ L_{2}$ for the concatenation of languages L_{1} and L_{2}. A string, w is in $L_{1} \circ L_{2}$ iff there are strings x and y (possibly empty) such that $w=x y, x \in L_{1}$, and $y \in L_{2}$.
b. Showing that the regular languages are closed under concatenation.

This is a bit more involved than the proof for union. Basically, we have to construct a machine that finds a prefix of w that is in L_{1} such that the rest of the string is in L_{2}. The problem is that there may be more than one such choice. For example, let L_{1} and L_{2} be defined as in the example for union. Let $w=$ ababcbabbabbabba. If we let $x=$ ababcb and $y=$ abbabbabba, we can show that $x \in L_{1}$ and $y \in L_{2}$. On the other hand, if we try $x=\mathrm{ab}$ and $y=\mathrm{abcbabbabbabba}$ we'll find that $x \in L_{1}$ but $y \notin L_{2}$. You can find other ways to break up w that work and others that don't work.
At first it might seem that a machine to recognize $L_{1} \circ L_{2}$ must keep track of all possible places to break w. For an aribitrarily long w, this means keeping track of an arbitrary amount of information, which isn't longer finite state.
The solution is to make a machine whose state keeps track of what state M_{1} would be in if we are still reading x and all the possible states that M_{2} could be in if we've switched to reading y. Because M_{2} has a finite set of states, there are only a finite set of possible combinations. Of course, if M_{2} has n_{2} states, then there are $2^{n_{2}}$ possible combinations, but that is still finite. So, we could build a the following machine:
$Q=Q_{1} \times 2^{Q_{2}}$.
Σ the same alphabet as for M_{1} and M_{2}.
$\delta\left(\left(q_{1} P_{2}\right), c\right)=\left(\delta_{1}\left(q_{1}, c\right),\left\{p^{\prime} \|\left(\exists p \in P_{2} \cdot p^{\prime}=\delta_{2}(p, c)\right) \vee\left(\left(p^{\prime}=q_{0,2}\right) \wedge\left(\delta_{1}\left(q_{1}, c\right) \in F_{1}\right)\right)\right\}\right)$.
That's a big formula. The $\delta_{1}\left(q_{1}, c\right)$ part keeps track of the state of M_{1}. if M_{1} reaches an accepting state (i.e. $\left.\left(\delta_{1}\left(q_{1}, c\right) \in F_{1}\right)\right)$, then we include $q_{0,2}$ in the set of states of Q_{2} that we are tracking. For each state of Q_{2} that we are tracking, we include its successor according to δ_{2} (thats what the $p^{\prime}=\delta_{2}(p, c)$ stuff is about.
$q_{0}=\left(q_{0,1},\left\{q_{0,2} \mid\right.\right.$ if $\left.\left.q_{0,1} \in F_{1}\right\}\right)$.

That means that we start M_{1} in its initial state. If the initial state of M_{1} is an accepting state, we start M_{2} right away. Otherwise, we set the initial possible states of M_{2} to the empty set.

$$
F=Q_{1} \times 2_{2}^{F}
$$

We accept if there's anyway that M_{2} could be in an accepting state.
We could go on and prove this construction correct, but I won't bother. The idea of keeping track of the states that a finite automaton could be in is the central idea behind NFAs (non-deterministic finite automata). We'll start on NFAs on Friday. Once we've introduced NFAs, showing closure under concatention is straightforward.
3. The regular languages are closed under Kleene star. If L is a language, then $w \in L^{*}$ iff there is some $k \geq 0$ and strings $x_{1}, x_{2}, \ldots x_{k}$ such that $w=x_{1} \cdot x_{2} \cdots x_{k}$, and all of the x_{i} 's are in L. Note that L^{*} always contains the empty string.

