CpSc 421 Introduction to Theory of Computing September 8620

Today’s lecture: Finite Automata

I. Sequential Circuits and Finite Automata
I1. Finite Automata as Language Recognizers
[11. The Proof from the End of the Sept. 8 Lecture

Schedule:

Today: Finite Automata — Readdpser 1.1.
Lecture will cover through Example 1.15 (i.e. pages 31-40).

September 13: Regular Languages.
The rest ofSpser 1.1 (i.e. pages 40-47).

September 15: Non-Determinism — Read&ipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47-52).
Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework O due.

September 20 and beyond: see Sept. 6 notes.

I Sequential Circuits and Finite Automata
I may update these notes with details for this section and¢ixg but that is by no means certain to happen in the
near future.

. Finite Automata as Language Recognizers

1. The Proof from the End of the Sept. 8 Lecture
A. The claim: Let® = {0, 1}. Consider the se¥ C ¥*, such thatw is in S iff
w =g, 0r
There is a string: in S such thatv = 0z1 or w = 1z0; or
There are strings andy in S such thatw = zy.

Given a stringw € ¥*, w is in S iff the number ofO’s in w is equal to the number dfs.

B. The proof.
Let nZero(w) denote the number of 0's im, nOne(w) denote the number of 1's iw and P(w) be true iff
nZero(w) = nOne(w).
L (weS)= P(w):
Let w be an arbitrary string irb. Our proof is by induction on the structure ef P is the induction
hypothesis for our proof. From the definition 8f we have four cases to consider:
w = € In this casenZero(w) = nOne(w) = 0; therefore,P(w) is satisfied.



Jr € S. w = 0z1: In this casenZero(w) = nZero(x) + 1. Likewise, nOne(w) = nOne(z) + 1.
Becauser € S, we can apply the induction hypothesis to conclutie:), nZero(x) = nOne(z).
Thus,nZero(w) = nOne(w) which means thaP(w) is satisfied.

Jz € S. w = 120: The proof for case is equivalent to the onedor= Ox1.

Jz,y € S. w = zy: In this casenZero(w) = nZero(x) + nZero(y), andnOne(w) = nOne(zx) +
nOne(y). Becauser andy are in.S, we can apply the induction hypothesis to concludero(xz) =
nOne(x) andnZero(y) = nOne(y). Thus,nZero(w) = nOne(w) which means thaP(w) is satis-
fied.

This completes the proof fdw € S) = P(w).

At this point, you might ask: “Why isn't this circular reasag?” This is because the proof works on the
structure ofw. The rules forS define derivationrees. Trees don’t have cycles, and this is what makes it so
that the proof isn’t circular reasoning.

As an example, lety = 001101. Let’s define functions for each of the four cases in the didimiof S:

So() = €
51 ({E) = 0Ozl
Sa(z) = 1z0
S3 (.23, y) = 2y

Now we have:
o w=51(55(51(50()), 52(5())))-
e  So() = e. We showedP(¢) in the first case of the induction proof.
L 51(50()) = 51(6) = 01.
Having shownP(e), this is handled by the second case of the induction proof.
L SQ(SQ()) = 52(6) = 10.
Having shownP(e), this is handled by the third case of the induction proof.
o S53(51(50()), S2(S0())) = S3(01,10) = 0110.
Having shownP(01) and P(10), this is handled by the fourth case of the induction proof.
e 51(51(50()), S2(S0())) = S1(0110) = 001101.
Having shownP(0110), this is handled by the second case of the induction proof.
Note that there is another derivatiomotby the rules forS. If you want some practice, you can figure out
that derivation, and then trace how the induction proof igsb that alternative derivation af as well.

(weS) <= Pw):

Letw € ¥* be any string for whichP(w) holds. Our proof is by induction on the lengthwof We note
that the length ofength(w) = nZero(w) + nOne(w) = 2nZero(w). Thereforeength(w) must be even.
We consider five cases:

w = €: w € S by the first case in the definition &f.

w = 0xl: nZero(x) = nZero(w) — 1 = nOne(w) — 1 = nOne(x). Thus, P(z). Furthermore,
length(z) = length(w) — 2, in particulariength(z) < length(w); so, we can apply the induction
hypothesis to conclude € S. Thus,w € S by the second case in the defintion%f

w = 1z0: The proof is equivalent to the one given for the previougcas

w = 0x0: This is the one where we have to think a little harder. We mmrshe number ofi's and1’s
inx:

1. nZero(x) = nZero(w)—2, w =0x0
2. nOne(x) = nOne(w), w = 0z0
3. nZero(w) = nOne(w), P(w)
4. nOne(x) = nZero(z)+2 1,2,3

We conclude that there must be a prefixcahat has one morethano.



More formally, we can define

prefiz(z,0) = €
prefir(c-x,n) = c-prefix(z,n—1)

In English,prefiz(x, n) is the string consisting of the firatsymbols ofz. By the definition ofprefiz,
nOne(prefiz(x,0))—nZero(prefiz(xz,0)) = 0. Itwas shown above thatOne(prefiz (x, length(z)))—
nZero(prefix(z, length(x))) = 2. Let k be the smallest number such thabne(prefiz(z, k)) —
nZero(prefix(x, k)) > 0. Itis straightforward to show thatOne(prefiz(x, k))—nZero(prefiz (z,k)) =
1. Now, letu = prefiz(z, k). We can definguffiz(x,n) to be the lash symbols ofz (the definition
is similar to that ofprefiz — can you write it down?). Let = suffiz(x, length(z) — k). Clearly,
x = wv. FurthermoreP(0u), P(v0), andw = Ouv0. We can apply the induction hypothesis to
concludedu € S andv0 € S. Thereforew € S by using the fourth case in the definition 8f
w = 1z1: The proof is equivalent to that for the previous case.
This completes the proof fqw € S) < P(w).

Having shown(w € S) = P(w) and(w € S) = P(w), we conclude that a string; is in .S the number of

0’s in w is equal to the number dfs.

]



