
CpSc 421 Introduction to Theory of Computing September 8, 2006

Today’s lecture: Finite Automata

I. Sequential Circuits and Finite Automata
II. Finite Automata as Language Recognizers

III. The Proof from the End of the Sept. 8 Lecture

Schedule:

Today: Finite Automata – Read:Sipser 1.1.
Lecture will cover through Example 1.15 (i.e. pages 31–40).

September 13: Regular Languages.
The rest ofSipser 1.1 (i.e. pages 40–47).

September 15: Non-Determinism – Read:Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47–52).
Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework 0 due.

September 20 and beyond: see Sept. 6 notes.

I. Sequential Circuits and Finite Automata
I may update these notes with details for this section and thenext, but that is by no means certain to happen in the
near future.

II. Finite Automata as Language Recognizers

III. The Proof from the End of the Sept. 8 Lecture

A. The claim: LetΣ = {0, 1}. Consider the setS ⊆ Σ∗, such thatw is in S iff

w = ǫ; or
There is a stringx in S such thatw = 0x1 or w = 1x0; or
There are stringsx andy in S such thatw = xy.

Given a string,w ∈ Σ∗, w is in S iff the number ofO’s in w is equal to the number of1’s.

B. The proof.
Let nZero(w) denote the number of 0’s inw, nOne(w) denote the number of 1’s inw andP (w) be true iff
nZero(w) = nOne(w).

1. (w ∈ S) ⇒ P (w):
Let w be an arbitrary string inS. Our proof is by induction on the structure ofw; P is the induction
hypothesis for our proof. From the definition ofS, we have four cases to consider:

w = ǫ: In this casenZero(w) = nOne(w) = 0; therefore,P (w) is satisfied.
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∃x ∈ S. w = 0x1: In this casenZero(w) = nZero(x) + 1. Likewise,nOne(w) = nOne(x) + 1.
Becausex ∈ S, we can apply the induction hypothesis to concludeP (x), nZero(x) = nOne(x).
Thus,nZero(w) = nOne(w) which means thatP (w) is satisfied.

∃x ∈ S. w = 1x0: The proof for case is equivalent to the one forw = 0x1.

∃x, y ∈ S. w = xy: In this casenZero(w) = nZero(x) + nZero(y), andnOne(w) = nOne(x) +
nOne(y). Becausex andy are inS, we can apply the induction hypothesis to concludenZero(x) =
nOne(x) andnZero(y) = nOne(y). Thus,nZero(w) = nOne(w) which means thatP (w) is satis-
fied.

This completes the proof for(w ∈ S) ⇒ P (w).
At this point, you might ask: “Why isn’t this circular reasoning?” This is because the proof works on the
structure ofw. The rules forS define derivationtrees. Trees don’t have cycles, and this is what makes it so
that the proof isn’t circular reasoning.
As an example, letw = 001101. Let’s define functions for each of the four cases in the definition of S:

S0() = ǫ

S1(x) = 0x1
S2(x) = 1x0

S3(x, y) = xy

Now we have:
• w = S1(S3(S1(S0()), S2(S0()))).

• S0() = ǫ. We showedP (ǫ) in the first case of the induction proof.

• S1(S0()) = S1(ǫ) = 01.
Having shownP (ǫ), this is handled by the second case of the induction proof.

• S2(S0()) = S2(ǫ) = 10.
Having shownP (ǫ), this is handled by the third case of the induction proof.

• S3(S1(S0()), S2(S0())) = S3(01, 10) = 0110.
Having shownP (01) andP (10), this is handled by the fourth case of the induction proof.

• S1(S1(S0()), S2(S0())) = S1(0110) = 001101.
Having shownP (0110), this is handled by the second case of the induction proof.

Note that there is another derivation ofw by the rules forS. If you want some practice, you can figure out
that derivation, and then trace how the induction proof applies to that alternative derivation ofw as well.

2. (w ∈ S) ⇐ P (w):
Let w ∈ Σ∗ be any string for whichP (w) holds. Our proof is by induction on the length ofw. We note
that the length oflength(w) = nZero(w) + nOne(w) = 2nZero(w). Therefore,length(w) must be even.
We consider five cases:

w = ǫ: w ∈ S by the first case in the definition ofS.

w = 0x1: nZero(x) = nZero(w) − 1 = nOne(w) − 1 = nOne(x). Thus,P (x). Furthermore,
length(x) = length(w) − 2, in particularlength(x) < length(w); so, we can apply the induction
hypothesis to concludex ∈ S. Thus,w ∈ S by the second case in the defintion ofS.

w = 1x0: The proof is equivalent to the one given for the previous case.

w = 0x0: This is the one where we have to think a little harder. We consider the number of0’s and1’s
in x:

1. nZero(x) = nZero(w) − 2, w = 0x0
2. nOne(x) = nOne(w), w = 0x0
3. nZero(w) = nOne(w), P (w)
4. nOne(x) = nZero(x) + 2 1, 2, 3

We conclude that there must be a prefix ofx that has one more1 than0.
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More formally, we can define

prefix(x, 0) = ǫ

prefix (c · x, n) = c · prefix (x, n − 1)

In English,prefix(x, n) is the string consisting of the firstn symbols ofx. By the definition ofprefix ,
nOne(prefix (x, 0))−nZero(prefix(x, 0)) = 0. It was shown above thatnOne(prefix (x, length(x)))−
nZero(prefix (x, length(x))) = 2. Let k be the smallest number such thatnOne(prefix (x, k)) −
nZero(prefix (x, k)) > 0. It is straightforward to show thatnOne(prefix (x, k))−nZero(prefix (x, k)) =
1. Now, letu = prefix(x, k). We can definesuffix(x, n) to be the lastn symbols ofx (the definition
is similar to that ofprefix – can you write it down?). Letv = suffix(x, length(x) − k). Clearly,
x = uv. FurthermoreP (0u), P (v0), andw = 0uv0. We can apply the induction hypothesis to
conclude0u ∈ S andv0 ∈ S. Therefore,w ∈ S by using the fourth case in the definition ofS.

w = 1x1: The proof is equivalent to that for the previous case.
This completes the proof for(w ∈ S) ⇐ P (w).

Having shown(w ∈ S) ⇒ P (w) and(w ∈ S) ⇒ P (w), we conclude that a string,w is in S the number of
0’s in w is equal to the number of1’s.
�

3


