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Lecture Outline

Mathematical background for the “Theory of Computing”
® Induction
® Strings
® An Example
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Axioms for the Natural Numbers

Axiom O: 0 is a natural number.

Axiom 1: if z is a natural number, so is succ(x)

Axiom 2: if x is a natural number, succ(x) > x.

Axiom 3: if x and y are natural numbers and x > y, then succ(x) > y.

Axiom 4: if x and y are natural numbers and = > y, then x #£ y.

We write N to denote the set of natural numbers.
[Outline .LA.1]
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Operations on the Natural Numbers

® Addition:
r+0 = ux,
xr + succ(y) = succ(z +y).
® Multiplication:
rx0 = 0,
x* succ(y) = (rx*xy)+ .

[Outline .A.2]
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Two More Operations
@® Division:
(z/y) =q & yxq=u.
® Exponentiation:

20 = succ(0),

CEsucc(y) _ (xy) % T

[Outline |.A.2]
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Abbreviations

® Decimal digits:

1 = succ(0), 2=succ(l), 3=succ(2), 4= succ(3),
5=succ(4), 6= succ(d), 7= succ(6), 8= succ(7),
9 = succ(8), 10 = succ(9).

® Multidigit numbers:

1437 = 1103+ 4102+ 3+ 10+ 7+10°
= succ(succ(succ(...(succ(0))...)))
1437 ‘‘succ(’’s 1437)s

0 isthe primitive element for the naturals.

[Outline 1.A.3]
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Lazy Proofs

& k2 4+ k
To prove: For all natural numbers, n, » k = .

2
=

Strategy:
® Wait for you to propose a particular m.

® Ask you to prove that m is a natural number. You'll have to me you
that

m = succ(succ(succ(. .. succ(0)...))).
® I'll Prove that the formula holds for m = 0.

® For each suce In the formula for m, I'll show that the formula for the
sum holds.

[Outline |1.B]
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Visualize Laziness

succ( proof for m = succ(succ(0))
succ( proof for m = succ(0) "

- D)) proof form=0_-"

If you show me: then, I'll show you:

m = succ( proof for m = succ(succ(succ(... succ(succ(succ(0)))...)))
&succ( proof for m = succ(succ(... succ(succ(succ(0)))...))
gsucc( proof for m = succ(... succ(succ(succ(0)))...)

: : S
ESUCC( proof for m = succ(succ(succ(0)))
(

[Outline |.B]
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Proof for m = 0

® Y. k=0

2
‘O+O:
2

® ]

[Outline |1.B]

02

Osucc(succ(O))

Y

(0x0)*0

O o

2

2

Y

Y

def. 4+

def. 2
def. exponentiation
def. multiplication

2 % 0 = 0, def. division
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Proof for succ(m)

succ(x)? + suce(x)

, 2
(x+1)“+(z+1)
2 )
(2°+2*x2+1)+(z+1)
2 )
(2 42)+2%(z+1)
— > 7
2
_ 24z | 2x(z+1)
i 2 + 2 Y

_ x22+ﬂf + (z + 1), def. division

— (Zi:O k) + (3j + 1)7
_ succ(x) I
k=0 )

[Outline 1.B]

r+ 1 = succ(x)
algebra

more algebra

more algebra

2
already shown: > ¢ _ok = A&

def. summation
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Inductive Definitions

@® Induction applies when the domain of interest is defined inductively.

® An inductive definition consists of a collection cases:
® Primitive elements. We can write these cases as:

so € S

For example, 0 € N.

@® Inductive cases that build larger elements from smaller ones. We can write:

Vsi1,82,...8, € S.C(s1,82,...8k) €S

For example, Vz € N. succ(x) € N.

[Outline |.C]
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Proof By Induction

If S'Is a set that is defined inductively, and P : S — {0,1} IS
a predicate over elements of S, then we can prove that P
holds for all elements of S by showing

® For each primitive element, sq, of S show that P(s) is true.

® For each inductive case, show that for any non-primitive element of
s, you can find sq, s, ... s, such that s = C(sq, s9, ... si), and that

(P(s1) A P(s2) A...NP(sr)) = P(s)

[Outline 1.C]
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Strong Induction

® Let S be the set such that x € S iff
® »=0,o0r
® +=1,o0r
® there are y and z in S such that x = y + z.
It is straightforward to show that S = N, the natural numbers as
defined on slide 3.

® Proof by strong induction.
To prove that P(n) holds for all natural number, n, show:
® P(0),and
® P(1),and
® for any natural number z > 1, we can find natural numbers y < x and z < z
suchthatz =y + z,and (P(y) A P(z)) = P(x).

® There are many more ways we could generate the integers, and
each leads to its own template for induction proofs.
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Strings

Let X be a finite set of “symbols”.

® Informal definition: a string is a sequence of zero or more elements
from X.

® Inductive definition: s € X* Iff
® s — ¢, the empty string.

® Thereisaw e X*andace Y suchthats = w - c.

® Note: The operator - represents concatenation, and we often omit
writing it, just like skipping the * for multiplication.

[Outline Section II.A]
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Operations on Strings:

® String concatenation:

r-e = x
z-(y-c) = (z-y)c
® Length:
length(e) = 0
length(w -c¢) = length(w)+ 1
® Equality:
T=y < (z =€) A(y=¢)

[Outline Section I1.B]
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One More Operation:

® Ordering:
r=y <+ length(x) < length(y)
vV (length(x) = length(y)) A (z =
vV  (length(x) = length(y)) A (z =

Note that “zebra” < “aardvark” by this ordering.

[Outline Section I1.B]

8 September 2006 — p.16/17



Putting 1t All Together

® LetX ={0,1}.
® LetS CY* suchthat wisin S iff

@® w=c¢cor
® There is a string = in S such that w = 0z1 or w = 1x0; or

® There are strings = and y in S such that w = zv.

® Prove that w is in S iff the number of O’s in w is equal to the
number of 1’s.
® We’'ll work this out on the whiteboard.

[Outline section Il]
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