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Lecture Outline
Mathematical background for the “Theory of Computing”

Induction

Strings

An Example

8 September 2006 – p.2/17



Axioms for the Natural Numbers
Axiom 0: 0 is a natural number.

Axiom 1: if x is a natural number, so is succ(x)

Axiom 2: if x is a natural number, succ(x) > x.

Axiom 3: if x and y are natural numbers and x > y, then succ(x) > y.

Axiom 4: if x and y are natural numbers and x > y, then x 6= y.

We write N to denote the set of natural numbers.

[Outline I.A.1]
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Operations on the Natural Numbers
Addition:

x + 0 = x,

x + succ(y) = succ(x + y).

Multiplication:

x ∗ 0 = 0,

x ∗ succ(y) = (x ∗ y) + x.

[Outline I.A.2]
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Two More Operations
Division:

(x/y) = q ⇔ y ∗ q = x.

Exponentiation:

x0 = succ(0),

xsucc(y) = (xy) ∗ x.

[Outline I.A.2]
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Abbreviations
Decimal digits:

1 = succ(0), 2 = succ(1), 3 = succ(2), 4 = succ(3),

5 = succ(4), 6 = succ(5), 7 = succ(6), 8 = succ(7),

9 = succ(8), 10 = succ(9).

Multidigit numbers:

+ 4*10 + 3*10 + 7*102 1 031*10

1437 ‘‘succ(’’s 1437 )s

0 is the primitive element for the naturals.

succ(succ(succ(...(succ(0))...)))
1437 =

=
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Lazy Proofs

To prove: For all natural numbers, n,
n

∑

k=0

k =
k2 + k

2
.

Strategy:

Wait for you to propose a particular m.

Ask you to prove that m is a natural number. You’ll have to me you
that

m = succ(succ(succ(. . . succ(0) . . .))).

I’ll Prove that the formula holds for m = 0.

For each succ in the formula for m, I’ll show that the formula for the
sum holds.

[Outline I.B]
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Visualize Laziness
then, I’ll show you:If you show me:

m = succ(
succ(

succ( proof for m = succ(... succ(succ(succ(0)))...)

proof for m = succ(succ(... succ(succ(succ(0)))...))
proof for m = succ(succ(succ(... succ(succ(succ(0)))...)))

succ(

succ(
succ(

0)))...))) proof for m = 0

proof for m = succ(0)

proof for m = succ(succ(0))

proof for m = succ(succ(succ(0)))
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Proof for m = 0
∑0

k=0 k = 0.

02 + 0

2
=

02

2
, def. +

= 0succ(succ(0))

2 , def. 2

= (0∗0)∗0
2 , def. exponentiation

= 0
2 , def. multiplication

= 0, 2 ∗ 0 = 0, def. division

�
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Proof for succ(m)

succ(x)2 + succ(x)

2
= (x+1)2+(x+1)

2 , x + 1 = succ(x)

= (x2+2∗x+1)+(x+1)
2 , algebra

= (x2+x)+2∗(x+1)
2 , more algebra

= x
2+x

2 + 2∗(x+1)
2 , more algebra

= x
2+x

2 + (x + 1), def. division

=
(
∑x

k=0 k
)

+ (x + 1), already shown:
∑x

k=0 k = k
2+k

2

=
∑

succ(x)
k=0 k, def. summation
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Inductive Definitions
Induction applies when the domain of interest is defined inductively.

An inductive definition consists of a collection cases:
Primitive elements. We can write these cases as:

s0 ∈ S

For example, 0 ∈ N.

Inductive cases that build larger elements from smaller ones. We can write:

∀s1, s2, . . . sk ∈ S. C(s1, s2, . . . sk) ∈ S

For example, ∀x ∈ N. succ(x) ∈ N.

[Outline I.C]
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Proof By Induction
If S is a set that is defined inductively, and P : S → {0, 1} is
a predicate over elements of S, then we can prove that P

holds for all elements of S by showing

For each primitive element, s0, of S show that P (s0) is true.

For each inductive case, show that for any non-primitive element of
s, you can find s1, s2, . . . sk such that s = C(s1, s2, . . . sk), and that

(P (s1) ∧ P (s2) ∧ . . . ∧ P (sk)) ⇒ P (s)

[Outline I.C]
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Strong Induction
Let S be the set such that x ∈ S iff

x = 0, or

x = 1, or

there are y and z in S such that x = y + z.

It is straightforward to show that S = N, the natural numbers as
defined on slide 3.

Proof by strong induction.
To prove that P (n) holds for all natural number, n, show:

P (0), and

P (1), and

for any natural number x > 1, we can find natural numbers y < x and z < x

such that x = y + z, and (P (y) ∧ P (z)) =⇒ P (x).

There are many more ways we could generate the integers, and
each leads to its own template for induction proofs.
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Strings
Let Σ be a finite set of “symbols”.

Informal definition: a string is a sequence of zero or more elements
from Σ.

Inductive definition: s ∈ Σ∗ iff
s = ǫ, the empty string.

There is a w ∈ Σ∗ and a c ∈ Σ such that s = w · c.

Note: The operator · represents concatenation, and we often omit
writing it, just like skipping the ∗ for multiplication.

[Outline Section II.A]
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Operations on Strings:
String concatenation:

x · ǫ = x

x · (y · c) = (x · y) · c

Length:

length(ǫ) = 0

length(w · c) = length(w) + 1

Equality:

x = y ↔ (x = ǫ) ∧ (y = ǫ)

∨ (x = u · c) ∧ (y = v · d) ∧ (u = v) ∧ (c = d)

[Outline Section II.B]
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One More Operation:
Ordering:

x = y ↔ length(x) < length(y)

∨ (length(x) = length(y)) ∧ (x = c · u) ∧ (y = d · v) ∧ (c

∨ (length(x) = length(y)) ∧ (x = c · u) ∧ (y = c · v) ∧ (u

Note that “zebra” < “aardvark” by this ordering.

[Outline Section II.B]
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Putting it All Together
Let Σ = {0, 1}.

Let S ⊆ Σ∗, such that w is in S iff
w = ǫ; or

There is a string x in S such that w = 0x1 or w = 1x0; or

There are strings x and y in S such that w = xy.

Prove that w is in S iff the number of O’s in w is equal to the
number of 1’s.

We’ll work this out on the whiteboard.

[Outline section III]
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