Inductions and Strings

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Lecture Outline

Mathematical background for the "Theory of Computing"

- Induction
- Strings
- An Example

Axioms for the Natural Numbers

Axiom 0: 0 is a natural number.
Axiom 1: if x is a natural number, so is $\operatorname{succ}(x)$
Axiom 2: if x is a natural number, $\operatorname{succ}(x)>x$.
Axiom 3: if x and y are natural numbers and $x>y$, then $\operatorname{succ}(x)>y$.
Axiom 4: if x and y are natural numbers and $x>y$, then $x \neq y$.
We write \mathbb{N} to denote the set of natural numbers.
[Outline I.A.1]

Operations on the Natural Numbers

- Addition:

$$
\begin{aligned}
x+0 & =x \\
x+\operatorname{succ}(y) & =\operatorname{succ}(x+y)
\end{aligned}
$$

- Multiplication:

$$
\begin{aligned}
x * 0 & =0 \\
x * \operatorname{succ}(y) & =(x * y)+x
\end{aligned}
$$

[Outline I.A.2]

Two More Operations

- Division:

$$
(x / y)=q \quad \Leftrightarrow \quad y * q=x .
$$

- Exponentiation:

$$
\begin{aligned}
x^{0} & =\operatorname{succ}(0), \\
x^{\operatorname{succ}(y)} & =\left(x^{y}\right) * x .
\end{aligned}
$$

[Outline I.A.2]

Abbreviations

- Decimal digits:

$$
\begin{array}{lll}
1=\operatorname{succ}(0), & 2=\operatorname{succ}(1), & 3=\operatorname{succ}(2), \\
5=\operatorname{succ}(4), & 6=\operatorname{succ}(3), \\
5=\operatorname{succ}(8), & 10=\operatorname{succ}(9) & 7=\operatorname{succ}(6),
\end{array} \quad 8=\operatorname{succ}(7),
$$

- Multidigit numbers:

$$
\begin{aligned}
& 1437= 1^{*} 10^{3}+4 * 10^{2}+3 * 10^{1}+7 * 10^{0} \\
&= \underbrace{1437) \mathrm{s}}_{1437{ }^{\text {'، } \operatorname{succ}(}(\operatorname{succ}(\operatorname{succ}(\ldots(\operatorname{succ}(0)) \ldots))} \\
& 0 \text { is the primitive element for the naturals. }
\end{aligned}
$$

[Outline I.A.3]

Lazy Proofs

To prove: For all natural numbers, $n, \sum_{k=0}^{n} k=\frac{k^{2}+k}{2}$.

Strategy:

- Wait for you to propose a particular m.
- Ask you to prove that m is a natural number. You'll have to me you that

$$
m=\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\ldots \operatorname{succ}(0) \ldots))) .
$$

- I'll Prove that the formula holds for $m=0$.
- For each succ in the formula for m, l'll show that the formula for the sum holds.
[Outline I.B]

Visualize Laziness

```
If you show me:
\(\mathrm{m}=\operatorname{succ}(\)
succ(
>succ
!
succ(
succ(
- succ(
- 0) ))...)) )
```

```
then, I'll show you:
proof for m = succ(succ(succ(... succ(succ(succ(0)))...)))
proof for m = succ(succ(... succ(succ(succ(0)))...))
proof for m = succ(... succ(succ(succ(0)))...)
proof for m = succ(succ(succ(0)))
proof for m = succ(succ(0))
proof for m = succ(0)
proof for m = 0
```

[Outline I.B]

Proof for $m=0$

- $\sum_{k=0}^{0} k=0$.
$\begin{array}{rlrl}\frac{0^{2}+0}{2} & =\frac{0^{2}}{2}, & \text { def. }+ \\ & =\frac{0^{\text {surcec(succe}(0))}}{2}, & & \text { def. } 2\end{array}$

$$
=\frac{(0 * 0) * 0}{2}, \quad \text { def. exponentiation }
$$

$$
=\frac{0}{2}, \quad \text { def. multiplication }
$$

$$
=0, \quad 2 * 0=0 \text {, def. division }
$$

- \square
[Outline I.B]

Proof for $\operatorname{succ}(m)$

$$
\begin{array}{rlr}
& \frac{\operatorname{succ}(x)^{2}+\operatorname{succ}(x)}{2} \\
= & \frac{(x+1)^{2}+(x+1)}{2}, & \\
= & \frac{\left(x^{2}+2 * x+1\right)+(x+1)}{2}, & \\
= & \frac{\left(x^{2}+x\right)+2 *(x+1)}{2}, & \text { algebra } \\
= & \frac{x^{2}+x}{2}+\frac{2 *(x+1)}{2}, & \text { more algebra } \\
= & \frac{x^{2}+x}{2}+(x+1), \text { def. division }(x) \\
= & & \\
= & \left.\sum_{k=0}^{s u c c} k\right)+(x+1), & \\
k, & \text { already shown: } \sum_{k=0}^{x} k=\frac{k^{2}+k}{2} \\
= & & \text { def. summation }
\end{array}
$$

[Outline I.B]

Inductive Definitions

- Induction applies when the domain of interest is defined inductively.
- An inductive definition consists of a collection cases:
- Primitive elements. We can write these cases as:

$$
s_{0} \in S
$$

For example, $0 \in \mathbb{N}$.

- Inductive cases that build larger elements from smaller ones. We can write:

$$
\forall s_{1}, s_{2}, \ldots s_{k} \in S . C\left(s_{1}, s_{2}, \ldots s_{k}\right) \in S
$$

For example, $\forall x \in \mathbb{N}$. $\operatorname{succ}(x) \in \mathbb{N}$.
[Outline I.C]

Proof By Induction

If S is a set that is defined inductively, and $P: S \rightarrow\{0,1\}$ is a predicate over elements of S, then we can prove that P holds for all elements of S by showing

- For each primitive element, s_{0}, of S show that $P\left(s_{0}\right)$ is true.
- For each inductive case, show that for any non-primitive element of s, you can find $s_{1}, s_{2}, \ldots s_{k}$ such that $s=C\left(s_{1}, s_{2}, \ldots s_{k}\right)$, and that

$$
\left(P\left(s_{1}\right) \wedge P\left(s_{2}\right) \wedge \ldots \wedge P\left(s_{k}\right)\right) \Rightarrow P(s)
$$

[Outline I.C]

Strong Induction

- Let \mathcal{S} be the set such that $x \in \mathcal{S}$ iff
- $x=0$, or
- $x=1$, or
- there are y and z in \mathcal{S} such that $x=y+z$.

It is straightforward to show that $S=\mathbb{N}$, the natural numbers as defined on slide 3.

- Proof by strong induction.

To prove that $P(n)$ holds for all natural number, n, show:

- $P(0)$, and
- $P(1)$, and
- for any natural number $x>1$, we can find natural numbers $y<x$ and $z<x$ such that $x=y+z$, and $(P(y) \wedge P(z)) \Longrightarrow P(x)$.
- There are many more ways we could generate the integers, and each leads to its own template for induction proofs.

Strings

Let Σ be a finite set of "symbols".

- Informal definition: a string is a sequence of zero or more elements from Σ.
- Inductive definition: $s \in \Sigma^{*}$ iff
- $s=\epsilon$, the empty string.
- There is a $w \in \Sigma^{*}$ and a $c \in \Sigma$ such that $s=w \cdot c$.
- Note: The operator • represents concatenation, and we often omit writing it, just like skipping the $*$ for multiplication.
[Outline Section II.A]

Operations on Strings:

- String concatenation:

$$
\begin{aligned}
x \cdot \epsilon & =x \\
x \cdot(y \cdot c) & =(x \cdot y) \cdot c
\end{aligned}
$$

- Length:

$$
\begin{aligned}
\text { length }(\epsilon) & =0 \\
\text { length }(w \cdot c) & =\text { length }(w)+1
\end{aligned}
$$

- Equality:

$$
\begin{aligned}
x=y \quad \leftrightarrow \quad & (x=\epsilon) \wedge(y=\epsilon) \\
& \vee(x=u \cdot c) \wedge(y=v \cdot d) \wedge(u=v) \wedge(c=d)
\end{aligned}
$$

One More Operation:

- Ordering:

$$
\begin{aligned}
x=y & \quad \\
& \vee(\text { length }(x)<\text { length }(y) \\
& \vee(\operatorname{length}(x)=\text { length }(y)) \wedge(x=c \cdot u) \wedge(y=d \cdot v) \wedge \\
& (x)=\text { length }(y)) \wedge(x=c \cdot u) \wedge(y=c \cdot v) \wedge
\end{aligned}
$$

Note that "zebra" < "aardvark" by this ordering.
[Outline Section II.B]

Putting it All Together

- Let $\Sigma=\{0,1\}$.
- Let $S \subseteq \Sigma^{*}$, such that w is in S iff
- $w=\epsilon$; or
- There is a string x in S such that $w=0 x 1$ or $w=1 x 0$; or
- There are strings x and y in S such that $w=x y$.
- Prove that w is in S iff the number of O 's in w is equal to the number of 1 's.
- We'll work this out on the whiteboard.
[Outline section III]

