CpSc 421 Introduction to Theory of Computing

Today’slecture: Mathematical Background

I. Induction
[1. Strings
[11. An Example

Schedule:

Today: Mathematical Background — Reafipser chapter O
Homework 0 goes out (due Sept. 18).

September 11: Finite Automata — ReadSipser 1.1.
Lecture will cover through Example 1.15 (i.e. pages 31-40).

September 13: Regular Languages.
The rest ofSipser 1.1 (i.e. pages 40-47).

September 15: Non-Determinism — ReadSipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47-52).
Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework O due.

September 20 and beyond: see Sept. 6 notes.

September 8620

l. Induction

A. The Natural Numbers:

1 Defining the natural numbers:
Axiom 0: 0 is a natural number.

Axiom 1: if z is a natural number, so isice(x)
Axiom 2: if z is a natural numbekucc(z) > .

Axiom 3: if x andy are natural numbers and> y, thensucc(z) > y.
Axiom 4: if x andy are natural numbers and> y, then(z # y).

In English, this says that you can obtain any natural nunipessarting with) and then successively adding
one until you get to the one that you wantuec is thesuccessor function. Furthermore, this produces the
numbersin ascending order, and each one is unique (i.e aydthavesucc(succ(suce(. . . suce(x) . ..))) =
x, for anyz and any number of successor operations greater than zeag)ndHintroduced> and#, we

can use the other comparison operators as well. More foymall

(z=y)=-(r#y), @<y =(=
(z=y) = (y <) (z >vy)

2. Operations on the natural numbers:

<
= (



a Addition:

z+0 = =z
x+ suce(y) = succ(z+y).
b. Multiplication:
zx0 = 0,
xxsucc(y) = (z*y)+a.

C. Division:
(x/y)=q & y*rq=u=x

Note that there division is not defined for all possible chesiofx andy. For example, it = 5 and
y = 3, there is no natural numbey, such that: = ¢ x y. If x = 0 andy = 0, theng can be any natural
number. Ifx # 0 andy = 0, then there is no natural numbgthat such thag « ¢ = «.
d. Exponentiation:
20 = suce(0),
poreelw) = (V) x 2.

| will assume the usual precedence rules for expressiorsistorg of multiple operators.

3. Some handy abbreviations:
a. Decimal digits:

1 = suce(0), 2=succ(l), 3=succ(2), 4=succ(3), b= succ(4),
6 = succ(5), 7= succ(6), 8= succ(7), 9= succ(8), 10 = succ(9).

b. Multidigit numbers:
1437 = 1%10%+4%102+ 310! + 7 10°.
Let's prove that for any natural number,

- K+ k
k =
2 3

Mark’s Lazy Proof: | won't bother to do anything. If you quest my claim, I'll ask you to propose a

counterexample. Let's say you tell me thatis a counterexample. I'll stall for time and ask you to prove t

me thatm is a natural number. This means that you have to show me that
m = succ(suce(suce(. .. suce(0)...))).
Now, I'll prove that the formula holds whem = 0:
22:0 k=0

by the definition of summation (which | haven’t bothered tolirde in these notes). Now, we look at

02+0
2
We get

vt - ¢ def. +
_ Osucc(;ucc(o))’ def. 2
= (000 def. exponentiation
= 3, def. multiplication
= 0, 2% 0 = 0, def. division



Now consider the case whem = succ(succ(suce(. .. succ(0)...))). Here’s my strategy. Having proven the
formula form = 0, I'll construct a proof that goes along side the chai®fc functions. Thus, I'll prove the
claim first for0, then forsucc(0), then forsuce(suce(0)) and so on until | reach the number that you proposed.
Let's say that I've proven the claim far, then to prove it fosucc(z), | just have to show

suce(z)? + suce(x)

2
7(I+1)2+(z+1), r+ 1 = succ(x)

2
(22 42%x+1)+(z4+1)

S E— algebra

= w, more algebra

= # + w, more algebra

— Sy (e41),  def division

= ik +@+1), Yok = L;’“ as already shown
@) g def. summation

k=0
When | write that something follows from “algebra”, I'm ugirthe distributive and associative properties
for addition and multiplication. These can be proven usheydefinitions | gave above for natural numbers,
multiplication, and addition.

C. Proof by induction:
Note that my “lazy proof” constructed a proof that followée tdefinition of a natural number. In other words,
given thatm is a natural number, we must be able to derivdy the cases of the definition. We can derive
a proof that follows the same cases. By writing a separateffioo each case in the definition, we prove the
result for anything that satisfies the definition.
This is calledproof by induction. We also see that there is nothing magical about it; it's jpsbof by the
definition of the domain”. Furthermore, induction is notilied to proofs about natural numbers. Induction
can be applied tanything that has an inductive definition.
Aninductive definition is one that is broken into multiplesea. Some of the cases define the primitive elements
of the set. The other cases describe how to construct lalgereeats of the set from smaller ones. For the
natural numberg) was the primitive element, and.cc built large elements from smaller ones. We'll now see
how we can do similar things with strings.

. Strings
A. Definition
1 Informal: A string is a sequence of zero or more elements fadinite alphabety..
2. Inductive: given a finite alphabeX, a string of elements df is either

€, the empty string
or w-c¢, wherece 3, andw is a string.

3. 3*: we write X* to indicate the set of all strings composed of elements.of

B. Operations on Strings
1 Length. We can now define the length of a string:
length(e) = 0
length(w-¢) = length(w) +1

Note how the definition ofength parallels the structure of the definition of a string. Durihg term, we’'ll
see that when we have a function that takes a string as an argutie definition of the function usually
has this form. More generally, when we have a function thietdaan argument from a set that we've
defined inductively, the definition of the function will tyqailly have the same structure as the definition of
the set.



2. Ordering. We'll say that two strings are equal if they conefsthe same seqgence of symbols. Written
mathematically, we get:

T=y < (x=e)AN(y=¢
(

If the elements of are ordered, then we can use that order to define an orderithg @lements oE*.
Forx andy in ¥*, we'll say thatr < y iff

length(x) < length(y)
vV (length(z) = length(y)) AN(x =c-u)A(y=d-v) A(c<d)
vV (length(z) = length(y)) ANz =c-u) A (y=c-v) A (u<v)

Note how the definitions for length and ordering follow thdustive definition of strings.

The ordering defined above is called flesigraphical ordering and is similar to the ordering used in the
dictionary. Here's the difference. In our lexigraphicadlering, shorter strings occur before longer ones.
Thus, “zebra” comes before “aardvark”. This is because Wawvastrings of arbitrarily long length. If
we use dictionary order, our “dictionary” would start: a, aaa, aaaa, aaaaa, ..., and we’'d never get to
anything with a “b” (or anything else other than “a”s) in it.

An example.
Let's combine strings and induction. LEt= {0, 1}. Consider the sef C ©*, such thatw is in S iff
w =€, 0r
There is a string in S such thatv = 0x1 or w = 1z0; or
There are strings andy in S such thatw = xy.

Prove thatw is in S iff the number ofO’s in w is equal to the number dfs.

We'll work this out in class on the whiteboard, and a completesion of the proof should appear at the end of the
Sept. 11 notes.



