
CpSc 421 Introduction to Theory of Computing September 8, 2006

Today’s lecture: Mathematical Background

I. Induction
II. Strings

III. An Example

Schedule:

Today: Mathematical Background – Read:Sipser chapter 0
Homework 0 goes out (due Sept. 18).

September 11: Finite Automata – Read:Sipser 1.1.
Lecture will cover through Example 1.15 (i.e. pages 31–40).

September 13: Regular Languages.
The rest ofSipser 1.1 (i.e. pages 40–47).

September 15: Non-Determinism – Read:Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47–52).
Homework 1 goes out (due Sept. 25).

September 18: NFAs
Lecture will cover through Example 1.38 (i.e. pages 53-54).
Homework 0 due.

September 20 and beyond: see Sept. 6 notes.

I. Induction

A. The Natural Numbers:

1. Defining the natural numbers:
Axiom 0: 0 is a natural number.

Axiom 1: if x is a natural number, so issucc(x)

Axiom 2: if x is a natural number,succ(x) > x.

Axiom 3: if x andy are natural numbers andx > y, thensucc(x) > y.

Axiom 4: if x andy are natural numbers andx > y, then(x 6= y).
In English, this says that you can obtain any natural numbersby starting with0 and then successively adding
one until you get to the one that you want –succ is thesuccessor function. Furthermore, this produces the
numbers in ascending order, and each one is unique (i.e. you can’t havesucc(succ(succ(. . . succ(x) . . .))) =
x, for anyx and any number of successor operations greater than zero). Having introduced> and 6=, we
can use the other comparison operators as well. More formally,

(x = y) ≡ ¬(x 6= y), (x ≤ y) ≡ ((x < y) ∨ (x = y)),
(x ≥ y) ≡ (y ≤ x), (x > y) ≡ (y < x).

2. Operations on the natural numbers:

1



a. Addition:
x + 0 = x,

x + succ(y) = succ(x + y).

b. Multiplication:
x ∗ 0 = 0,

x ∗ succ(y) = (x ∗ y) + x.

c. Division:
(x/y) = q ⇔ y ∗ q = x.

Note that there division is not defined for all possible choices ofx andy. For example, ifx = 5 and
y = 3, there is no natural number,q, such thatx = q ∗ y. If x = 0 andy = 0, thenq can be any natural
number. Ifx 6= 0 andy = 0, then there is no natural numberq that such thaty ∗ q = x.

d. Exponentiation:
x0 = succ(0),

xsucc(y) = (xy) ∗ x.

I will assume the usual precedence rules for expressions consisting of multiple operators.

3. Some handy abbreviations:
a. Decimal digits:

1 = succ(0), 2 = succ(1), 3 = succ(2), 4 = succ(3), 5 = succ(4),
6 = succ(5), 7 = succ(6), 8 = succ(7), 9 = succ(8), 10 = succ(9).

b. Multidigit numbers:

1437 = 1 ∗ 103 + 4 ∗ 102 + 3 ∗ 101 + 7 ∗ 100.

B. Let’s prove that for any natural number,n,

n∑

k=0

k =
k2 + k

2

Mark’s Lazy Proof: I won’t bother to do anything. If you question my claim, I’ll ask you to propose a
counterexample. Let’s say you tell me thatm is a counterexample. I’ll stall for time and ask you to prove to
me thatm is a natural number. This means that you have to show me that

m = succ(succ(succ(. . . succ(0) . . .))).

Now, I’ll prove that the formula holds whenm = 0:

∑0
k=0 k = 0

by the definition of summation (which I haven’t bothered to include in these notes). Now, we look at

02 + 0

2

We get
02+0

2 = 02

2 , def.+

= 0succ(succ(0))

2 , def. 2
= (0∗0)∗0

2 , def. exponentiation
= 0

2 , def. multiplication
= 0, 2 ∗ 0 = 0, def. division

2



Now consider the case whenm = succ(succ(succ(. . . succ(0) . . .))). Here’s my strategy. Having proven the
formula form = 0, I’ll construct a proof that goes along side the chain ofsucc functions. Thus, I’ll prove the
claim first for0, then forsucc(0), then forsucc(succ(0)) and so on until I reach the number that you proposed.
Let’s say that I’ve proven the claim forx, then to prove it forsucc(x), I just have to show

succ(x)2 + succ(x)

2
= (x+1)2+(x+1)

2 , x + 1 = succ(x)

= (x2+2∗x+1)+(x+1)
2 , algebra

= (x2+x)+2∗(x+1)
2 , more algebra

= x2+x
2 + 2∗(x+1)

2 , more algebra
= x2+x

2 + (x + 1), def. division
= (

∑x

k=0 k) + (x + 1),
∑x

k=0 k = k2+k
2 as already shown

=
∑

succ(x)
k=0 k def. summation

When I write that something follows from “algebra”, I’m using the distributive and associative properties
for addition and multiplication. These can be proven using the definitions I gave above for natural numbers,
multiplication, and addition.

C. Proof by induction:
Note that my “lazy proof” constructed a proof that followed the definition of a natural number. In other words,
given thatm is a natural number, we must be able to derivem by the cases of the definition. We can derive
a proof that follows the same cases. By writing a separate proof for each case in the definition, we prove the
result for anything that satisfies the definition.
This is calledproof by induction. We also see that there is nothing magical about it; it’s just“proof by the
definition of the domain”. Furthermore, induction is not limited to proofs about natural numbers. Induction
can be applied toanything that has an inductive definition.
An inductive definition is one that is broken into multiple cases. Some of the cases define the primitive elements
of the set. The other cases describe how to construct larger elements of the set from smaller ones. For the
natural numbers,0 was the primitive element, andsucc built large elements from smaller ones. We’ll now see
how we can do similar things with strings.

II. Strings

A. Definition
1. Informal: A string is a sequence of zero or more elements froma finite alphabet,Σ.

2. Inductive: given a finite alphabet,Σ, a string of elements ofΣ is either

ǫ, the empty string
or w · c, wherec ∈ Σ, andw is a string.

3. Σ∗: we writeΣ∗ to indicate the set of all strings composed of elements ofΣ.

B. Operations on Strings
1. Length. We can now define the length of a string:

length(ǫ) = 0
length(w · c) = length(w) + 1

Note how the definition oflength parallels the structure of the definition of a string. Duringthe term, we’ll
see that when we have a function that takes a string as an argument, the definition of the function usually
has this form. More generally, when we have a function that takes an argument from a set that we’ve
defined inductively, the definition of the function will typically have the same structure as the definition of
the set.

3



2. Ordering. We’ll say that two strings are equal if they consist of the same seqence of symbols. Written
mathematically, we get:

x = y ↔ (x = ǫ) ∧ (y = ǫ)
∨ (x = u · c) ∧ (y = v · d) ∧ (u = v) ∧ (c = d)

If the elements ofΣ are ordered, then we can use that order to define an ordering ofthe elements ofΣ∗.
Forx andy in Σ∗, we’ll say thatx < y iff

length(x) < length(y)
∨ (length(x) = length(y)) ∧ (x = c · u) ∧ (y = d · v) ∧ (c < d)
∨ (length(x) = length(y)) ∧ (x = c · u) ∧ (y = c · v) ∧ (u < v)

Note how the definitions for length and ordering follow the inductive definition of strings.
The ordering defined above is called thelexigraphical ordering and is similar to the ordering used in the
dictionary. Here’s the difference. In our lexigraphical ordering, shorter strings occur before longer ones.
Thus, “zebra” comes before “aardvark”. This is because we allow strings of arbitrarily long length. If
we use dictionary order, our “dictionary” would start: a, aa, aaa, aaaa, aaaaa, . . . , and we’d never get to
anything with a “b” (or anything else other than “a”s) in it.

III. An example.
Let’s combine strings and induction. LetΣ = {0, 1}. Consider the setS ⊆ Σ∗, such thatw is in S iff

w = ǫ; or

There is a stringx in S such thatw = 0x1 or w = 1x0; or

There are stringsx andy in S such thatw = xy.

Prove thatw is in S iff the number ofO’s in w is equal to the number of1’s.

We’ll work this out in class on the whiteboard, and a completeversion of the proof should appear at the end of the
Sept. 11 notes.

4


