Extra Credit

Note: All problems on this homework set are extra-credit. You may turn in solutions for up to four of the problems below. Turning in a solution for any part of a problem counts as attempting the entire problem.

Have fun!

1. (20 points) Let A be a CFL and B be regular. Prove that $A \cap B$ is a CFL.
2. (30 points) Let A be the language $\{x \mid \exists w . x=w w\}$. We showed in class that A is not a CFL. Prove that \bar{A} is a CFL.
3. (30 points) A DPDA is a deterministic, pushdown automaton. Formally, a DPDA, $D=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$. From any configuration, a DPDA has exactly one possible move. We need to allow ϵ moves so that in appropriate situations the DPDA can push more symbols onto the stack than it pops off. If the DPDA has an ϵ move possible, then there must only be one such move, and no other move may be possible. Finally, the input alphabet includes a special symbol, \dashv. This is an endmarker - the last symbol of any input string is \dashv and \dashv may not appear before the last symbol of the string.

We can describe DPDAs by drawing transition diagrams just as we did for (non-deterministic) PDAs. For a DPDA, there may not be multiple arrows out of a state that could be taken for the same input symbol and stack symbol.
(a) (10 points) Draw the transition diagram for a DPDA that accepts

$$
\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*} \mid \# \mathrm{a}(w)<\# b(w)\right\}
$$

(b) ($\mathbf{1 0}$ points) Prove that the class of languages accepted by DPDAs is closed under complement.
(c) ($\mathbf{1 0}$ points) Prove that the class of languages accepted by DPDAs is not closed under union.
4. (20 points) Let $A_{c}=\{M \# w \mid$ TM M writes symbol c on its tape when run with input $w\}$. Show that the language A_{c} is Turing undecidable.
5. ($\mathbf{3 0}$ points) Let NoWriteOverInput be the class of Turing machines that may not alter their input strings. If $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ is a Turing machine, then $M \in$ No WriteOverInput iff for every $c \in \Sigma$ and $q \in Q$:

$$
\delta(q, c)=\left(q^{\prime}, c, d\right)
$$

for some $q^{\prime} \in Q$ and some $d \in\{L, R\}$ (note that M writes the same symbol that it read).
(a) ($\mathbf{1 5}$ points) Let M be a Turing machine in No WriteOverInput. Prove that $L(M)$ is regular.
(b) ($\mathbf{1 5}$ points) Prove that the language $\{M \# w \mid M$ accepts $w\}$ is undecidable even if we restrict M to be in No WriteOverInput.
6. I hope to add a few more problems in the next day or two. I'll announce it when I add them.

