
CpSc 421 Homework 8 Due: Nov. 10
No Late Homework Accepted

1. (15 points) Let A1 = {M#w | M halts after at most|w||w| steps when run with inputw}. Show that language
A is Turing decidable.

Solution: I’ll describe a TM,MA1 that decidesA. It is convenient to use a multi-tapeTM for MA1. Here’s
whatMA1 does on inputM#w.

1. MA1 uses it’s second tape to determine the length ofw and calculate|w||w|.

2. MA1 simulatesM running on inputw. MA1 counts the number of steps of the simulation.

2.a. IfM halts (accepting or rejecting) after at most|w||w| steps,MA1 halts and accepts.

2.b. Otherwise (M is still running after|w||w| steps),MA1 rejects.

2. (30 points) Let A2 = {M | ∃w. M#w ∈ A1}.

(a) (15 points) Show that languageA2 is not Turing decidable.

Solution: I’ll reduceATM to A2. Given a stringM#w that describes a TM,M , and an input string,w,
the reduction constructs the description of a Turing machineM ′ that on inputx does the following:

1. Erases its tape.

2. Writesw on its tape.

3. Moves its head back to the beginning of the tape.

4. RunsM on its tape.

Constructing the description ofM ′ from the description ofM is clearly Turing computable, andM ′

acceptsx iff M acceptsw. Let N123 be the number of moves required to perform the first three steps
described above. There are simple implementations withN123 = 2(max(|w|, |x|+ 1) + 1). For large
|x|, this isN123 = 2|x|+ 4 � |x||x|.
Now note that,M ′ acceptsx in at most|x||x| moves iffM acceptsw in at most|x||x| −N123 moves.
If M acceptsw, we can find anx that is long enough thatM ′ will accept. This shows that ifM#x ∈
ATM thenM ′ ∈ A2. If M does not acceptw thenL(M ′) = ∅; in other words,M ′ rejectsx no matter
whatx is. Thus, the description ofM ′ is in A2 iff M acceptsw. This shows thatATM ≤m A2. We
know thatATM is not Turind decidable. Therefore,ATM is not Turing decidable either.

(b) (15 points) Show that languageA2 is Turing recognizable.

Solution: I’ll reduceA2 to ATM . Let MA2 be a TM that does the following on inputM :

1. If M is not a valid Turing machine description, thenMA2 rejects immediately.

2. Otherwise,MA2 construct the description of a TM,M ′ that does the following:

for(each stringw ∈ Σ∗) {
runM on inputw for at most|w||w| moves.
if(M halts after at most|w||w| moves)

accept;
}

Note thatM ′ acceptsM iff there is some stringw such thatM acceptsw after at most|w||w|

moves.

3. If M ′#M ∈ ATM , thenMA2 accepts. Otherwise,MA2 rejects.

Checking thatM is a valid Turing machine description is Turing computable. Furthermore, the con-
struction of the description ofM ′ from the description ofM is Turing computable. Thus, this is
a reduction fromA2 to ATM . The languageATM is Turing-recognizable; therefore,A2 is Turing-
recognizable as well.



3. (40 points)

(a) (10 points) Show that the class of Turing-decidable languages is closed under complement.

Solution: Let A be a Turing-decidable language. BecauseA is Turing-decidable, there is some TM that
decidesA, let

M = (Q, Σ,Γ, δ, q0, qaccept , qreject)

be TM that decidesA. BecauseM either accepts or rejects for any given input (i.e. it never loops),
we can exchange the accept and reject states to obtain a TM that decidesA. Let

M = (Q, Σ,Γ, δ, q0, qreject , qaccept)

BecauseM never loops,M never loops. Thus,L(M) = L(M) = A andM decidesA. This shows
thatA is Turing-decidable. BecauseA is an arbitrary, Turing-decidable language, this shows that the
class of Turing-decidable languages is closed under complement.

(b) (10 points) Show that the class of Turing-decidable languages is closed under star.

Solution: Let A be a Turing-decidable language, and letM be a TM that decidesA. We showed in class
(and Sipser section 3.2) that non-deterministic TMs (NTMs) are equivalent to deterministic ones. I’ll
describe a NTM,MA∗ that decidesA∗. With inputw, MA∗ does the following:
1. If w = ε, thenMA∗ accepts.
2. Otherwise,MA∗ dividesw into stringsw1, w2, . . . wk such thatw1 · w2 · · ·wk = w, and for each

1 ≤ i ≤ k, |wi| > 0.
2.a. For each1 ≤ i ≤ k, MA∗ runsM onwi.
2.b. If M accepts all of thewi’s, thenMA∗ acceptsw.
2.c. Otherwise,M rejectsw.

BecauseM never loops, TMMA∗ never loops, andL(MA∗) = A∗. Thus,A∗ is Turing-decidable
which shows that the class of Turing-decidable languages is closed under star.

(c) (10 points) Show that the class of Turing-recognizable languages is not closed under complement.

Solution: For the sake of contradiction, assume that the Turing-recognizable langauges are closed under
complement. I will use this assumption to construct a TM that decidesATM , a contradiction.
The languageATM is Turing-recognizable. This means that we can construct a TM,MATM that when
run with inputM#w accepts ifM is the description of a TM that accepts when run with inputw.
MATM

may either reject or loop ifM does not acceptw. If the class of Turing-recognizable languages
were closed under complement, thenATM would be Turing-recognizable. LetMATM

be a TM that
recognizesATM .
Now, I’ll constructDATM

, a TM thatdecidesATM . On inputw DATM
simulates bothMATM

and
MATM

running with inputw. In particular,DATM alternates between simulating a step forMATM and
simulating a step forMATM

. Note that eitherx ∈ L(MATM ) or x ∈ L(MATM
). Thus,DATM will

eventually simulate a step where one of these machines halts. If the halting step is thatMATM
accepts

x (or MATM
rejectsx), thenDATM

accepts. If the halting step is thatMATM
acceptsx (or MATM

acceptsx), thenDATM
rejects. Thus,DATM

is a decider forATM . We know thatATM is undecidable.
Therefore,DATM

cannot exist, which refutes our assumption that the Turing-recognizable languages
are closed under complement.
This shows that the Turing-recognizable languages are not closed under complement.

(d) (10 points) Show that the class of Turing-recognizable languages is closed under star.

Solution: My solution is essentially the same as for showing that the Turing-decidable langauges are
closed under star. In this case, if the input stringw is in A∗, then each substring will be accepted by
M . BecauseM recognizesA, it will halt for each substring. Thus, we can construct a recognizer
from A∗ given a recognizer forA.



4. (30 points) A linear bounded automaton(LBA) is a Turing Machine with a bounded tape; it cannot move its
head pasteither end of the input string. For example, you can assume that the input string has the form` v a
where` is a special left endmarker (that appears nowhere inv) anda is a special right endmarker (that appears
nowhere inv). All transitions from` preserve thè and move the head to the right. All transitions froma
preserve thea and move the head to the left. Let

ALBA = {M#w | M is an LBA that acceptsw}.

ALBA is Turing decidable (see Sipser Lemma 5.8). Thus, the halting problem for LBA’s is Turing decidable as
well.

Prove that there is some language,B such thatB is Turing decidable butB is not accepted by any LBA. (Hint:
use diagonalization.)

Solution: Let

B = {[M ] | [M ] describes an LBA that does not accept when run with[M ] as its input }

B is not accepted by any LBA.
For the sake of contradiction, assume otherwise. LetMB be an LBA that acceptsB. RunMB with its
own description,[MB ] as its input. IfMB accepts, then[MB ] 6∈ B. On the other hand, ifMB rejects
or loops, then[MB ] ∈ B. Both cases lead to a contradiction. This shows that there is no LBA that
acceptsB.

B is Turing-decidableAs noted above,ALBA is Turing-decidable. As shown in problem 3a, the Turing-
decidable languages are closed under complement. Thus,ALBA is Turing-decidable. LetMALBA

be a
TM that decidesALBA.
I’ll now construct at TM,TB that decidesB. On inputx, TB constructs the stringx#x. TB then runs
MALBA

on x#x. If MALBA
acceptsx#x, thenTB acceptsx. OtherwiseTB rejects. BecauseMALBA

is a decider,MALBA
never loops. Thus,TB never loops.TB is a TM that decidesB. This shows that

B is Turing decidable.


