Homework 8

- 1. (15 points) Let $A_1 = \{M \# w \mid M \text{ halts after at most } |w|^{|w|} \text{ steps when run with input } w\}$. Show that language A is Turing decidable.
 - **Solution:** I'll describe a TM, M_{A1} that decides A. It is convenient to use a multi-tape TM for M_{A1} . Here's what M_{A1} does on input M # w.
 - 1. M_{A1} uses it's second tape to determine the length of w and calculate $|w|^{|w|}$.
 - M_{A1} simulates M running on input w. M_{A1} counts the number of steps of the simulation.
 If M halts (accepting or rejecting) after at most |w|^{|w|} steps, M_{A1} halts and accepts.
 Otherwise (M is still running after |w|^{|w|} steps), M_{A1} rejects.
- 2. (30 points) Let $A_2 = \{M \mid \exists w. M \# w \in A_1\}.$
 - (a) (15 points) Show that language A_2 is not Turing decidable.
 - **Solution:** I'll reduce A_{TM} to A_2 . Given a string M # w that describes a TM, M, and an input string, w, the reduction constructs the description of a Turing machine M' that on input x does the following:
 - 1. Erases its tape.
 - 2. Writes w on its tape.
 - 3. Moves its head back to the beginning of the tape.
 - 4. Runs M on its tape.

Constructing the description of M' from the description of M is clearly Turing computable, and M' accepts x iff M accepts w. Let N_{123} be the number of moves required to perform the first three steps described above. There are simple implementations with $N_{123} = 2(\max(|w|, |x|+1)+1)$. For large |x|, this is $N_{123} = 2|x| + 4 \ll |x|^{|x|}$.

Now note that, M' accepts x in at most $|x|^{|x|}$ moves iff M accepts w in at most $|x|^{|x|} - N_{123}$ moves. If M accepts w, we can find an x that is long enough that M' will accept. This shows that if $M \# x \in A_{TM}$ then $M' \in A_2$. If M does not accept w then $L(M') = \emptyset$; in other words, M' rejects x no matter what x is. Thus, the description of M' is in A_2 iff M accepts w. This shows that $A_{TM} \leq_m A_2$. We know that A_{TM} is not Turind decidable. Therefore, A_{TM} is not Turing decidable either.

(b) (15 points) Show that language A_2 is Turing recognizable.

Solution: I'll reduce A_2 to A_{TM} . Let M_{A2} be a TM that does the following on input M:

1. If M is not a valid Turing machine description, then M_{A2} rejects immediately.

2. Otherwise, M_{A2} construct the description of a TM, M' that does the following:

for (each string $w \in \Sigma^*$) { run M on input w for at most $|w|^{|w|}$ moves. if (M halts after at most $|w|^{|w|}$ moves) accept;

}

Note that M' accepts M iff there is some string w such that M accepts w after at most $|w|^{|w|}$ moves.

3. If $M' \# M \in A_{TM}$, then M_{A2} accepts. Otherwise, M_{A2} rejects.

Checking that M is a valid Turing machine description is Turing computable. Furthermore, the construction of the description of M' from the description of M is Turing computable. Thus, this is a reduction from A_2 to A_{TM} . The language A_{TM} is Turing-recognizable; therefore, A_2 is Turing-recognizable as well.

3. (40 points)

- (a) (10 points) Show that the class of Turing-decidable languages is closed under complement.
 - **Solution:** Let A be a Turing-decidable language. Because A is Turing-decidable, there is some TM that decides A, let

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

be TM that decides A. Because M either accepts or rejects for any given input (i.e. it never loops), we can exchange the accept and reject states to obtain a TM that decides \overline{A} . Let

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{reject}, q_{accept})$$

Because M never loops, \overline{M} never loops. Thus, $L(\overline{M}) = \overline{L(M)} = \overline{A}$ and \overline{M} decides \overline{A} . This shows that \overline{A} is Turing-decidable. Because A is an arbitrary, Turing-decidable language, this shows that the class of Turing-decidable languages is closed under complement.

- (b) (10 points) Show that the class of Turing-decidable languages is closed under star.
 - **Solution:** Let A be a Turing-decidable language, and let M be a TM that decides A. We showed in class (and Sipser section 3.2) that non-deterministic TMs (NTMs) are equivalent to deterministic ones. I'll describe a NTM, M_{A^*} that decides A^* . With input w, M_{A^*} does the following:
 - 1. If $w = \epsilon$, then M_{A^*} accepts.
 - 2. Otherwise, M_{A^*} divides w into strings w_1, w_2, \ldots, w_k such that $w_1 \cdot w_2 \cdots w_k = w$, and for each $1 \le i \le k, |w_i| > 0$.
 - 2.a. For each $1 \leq i \leq k$, M_{A^*} runs M on w_i .
 - 2.b. If M accepts all of the w_i 's, then M_{A^*} accepts w.
 - 2.c. Otherwise, M rejects w.

Because M never loops, TM M_{A^*} never loops, and $L(M_{A^*}) = A^*$. Thus, A^* is Turing-decidable which shows that the class of Turing-decidable languages is closed under star.

(c) (10 points) Show that the class of Turing-recognizable languages is not closed under complement.

Solution: For the sake of contradiction, assume that the Turing-recognizable langauges are closed under complement. I will use this assumption to construct a TM that decides A_{TM} , a contradiction.

The language A_{TM} is Turing-recognizable. This means that we can construct a TM, $M_{A_{TM}}$ that when run with input M # w accepts if M is the description of a TM that accepts when run with input w. $M_{A_{TM}}$ may either reject or loop if M does not accept w. If the class of Turing-recognizable languages were closed under complement, then $\overline{A_{TM}}$ would be Turing-recognizable. Let $M_{\overline{A_{TM}}}$ be a TM that recognizes $\overline{A_{TM}}$.

Now, I'll construct $D_{A_{TM}}$, a TM that *decides* A_{TM} . On input $w \ D_{A_{TM}}$ simulates both $M_{A_{TM}}$ and $M_{\overline{A_{TM}}}$ running with input w. In particular, $D_{A_{TM}}$ alternates between simulating a step for $M_{A_{TM}}$ and simulating a step for $M_{\overline{A_{TM}}}$. Note that either $x \in L(M_{A_{TM}})$ or $x \in L(M_{\overline{A_{TM}}})$. Thus, $D_{A_{TM}}$ will eventually simulate a step where one of these machines halts. If the halting step is that $M_{A_{TM}}$ accepts x (or $M_{\overline{A_{TM}}}$ rejects x), then $D_{A_{TM}}$ accepts. If the halting step is that $M_{\overline{A_{TM}}}$ accepts x (or $M_{\overline{A_{TM}}}$ rejects. Thus, $D_{A_{TM}}$ is a decider for A_{TM} . We know that A_{TM} is undecidable. Therefore, $D_{A_{TM}}$ cannot exist, which refutes our assumption that the Turing-recognizable languages are closed under complement.

This shows that the Turing-recognizable languages are not closed under complement.

- (d) (10 points) Show that the class of Turing-recognizable languages is closed under star.
 - **Solution:** My solution is essentially the same as for showing that the Turing-decidable langauges are closed under star. In this case, if the input string w is in A^* , then each substring will be accepted by M. Because M recognizes A, it will halt for each substring. Thus, we can construct a recognizer from A^* given a recognizer for A.

4. (30 points) A *linear bounded automaton* (LBA) is a Turing Machine with a bounded tape; it cannot move its head past *either* end of the input string. For example, you can assume that the input string has the form ⊢ v ⊣ where ⊢ is a special left endmarker (that appears nowhere in v) and ⊣ is a special right endmarker (that appears nowhere in v). All transitions from ⊢ preserve the ⊢ and move the head to the right. All transitions from ⊣ preserve the ⊣ and move the head to the left. Let

$$A_{LBA} = \{M \# w \mid M \text{ is an LBA that accepts } w\}.$$

 A_{LBA} is Turing decidable (see Sipser Lemma 5.8). Thus, the halting problem for LBA's is Turing decidable as well.

Prove that there is some language, B such that B is Turing decidable but B is not accepted by any LBA. (Hint: use diagonalization.)

Solution: Let

 $B = \{[M] \mid [M] \text{ describes an LBA that does not accept when run with } [M] \text{ as its input}$

B is not accepted by any LBA.

For the sake of contradiction, assume otherwise. Let M_B be an LBA that accepts B. Run M_B with its own description, $[M_B]$ as its input. If M_B accepts, then $[M_B] \notin B$. On the other hand, if M_B rejects or loops, then $[M_B] \in B$. Both cases lead to a contradiction. This shows that there is no LBA that accepts B.

}

B is *Turing-decidable* As noted above, A_{LBA} is Turing-decidable. As shown in problem 3a, the Turing-decidable languages are closed under complement. Thus, $\overline{A_{LBA}}$ is Turing-decidable. Let $M_{\overline{A_{LBA}}}$ be a TM that decides $\overline{A_{LBA}}$.

I'll now construct at TM, T_B that decides B. On input x, T_B constructs the string x # x. T_B then runs $M_{\overline{A_{LBA}}}$ on x # x. If $M_{\overline{A_{LBA}}}$ accepts x # x, then T_B accepts x. Otherwise T_B rejects. Because $M_{\overline{A_{LBA}}}$ is a decider, $M_{\overline{A_{LBA}}}$ never loops. Thus, T_B never loops. T_B is a TM that decides B. This shows that B is Turing decidable.