1. ($\mathbf{1 5}$ points) Let $A_{1}=\left\{M \# w \mid M\right.$ halts after at most $|w|^{|w|}$ steps when run with input $\left.w\right\}$. Show that language A is Turing decidable.

Solution: I'll describe a TM, $M_{A 1}$ that decides A. It is convenient to use a multi-tape $T M$ for $M_{A 1}$. Here's what $M_{A 1}$ does on input $M \# w$.

1. $M_{A 1}$ uses it's second tape to determine the length of w and calculate $|w|^{|w|}$.
2. $M_{A 1}$ simulates M running on input $w . M_{A 1}$ counts the number of steps of the simulation.
2.a. If M halts (accepting or rejecting) after at most $|w|^{|w|}$ steps, $M_{A 1}$ halts and accepts.
2.b. Otherwise (M is still running after $|w|^{|w|}$ steps), $M_{A 1}$ rejects.
3. (30 points) Let $A_{2}=\left\{M \mid \exists w . M \# w \in A_{1}\right\}$.
(a) ($\mathbf{1 5}$ points) Show that language A_{2} is not Turing decidable.

Solution: I'll reduce $A_{T M}$ to A_{2}. Given a string $M \# w$ that describes a TM, M, and an input string, w, the reduction constructs the description of a Turing machine M^{\prime} that on input x does the following:

1. Erases its tape.
2. Writes w on its tape.
3. Moves its head back to the beginning of the tape.
4. Runs M on its tape.

Constructing the description of M^{\prime} from the description of M is clearly Turing computable, and M^{\prime} accepts x iff M accepts w. Let N_{123} be the number of moves required to perform the first three steps described above. There are simple implementations with $N_{123}=2(\max (|w|,|x|+1)+1)$. For large $|x|$, this is $N_{123}=2|x|+4 \ll|x|^{|x|}$.
Now note that, M^{\prime} accepts x in at most $|x|^{|x|}$ moves iff M accepts w in at most $|x|^{|x|}-N_{123}$ moves. If M accepts w, we can find an x that is long enough that M^{\prime} will accept. This shows that if $M \# x \in$ $A_{T M}$ then $M^{\prime} \in A_{2}$. If M does not accept w then $L\left(M^{\prime}\right)=\emptyset$; in other words, M^{\prime} rejects x no matter what x is. Thus, the description of M^{\prime} is in A_{2} iff M accepts w. This shows that $A_{T M} \leq_{m} A_{2}$. We know that $A_{T M}$ is not Turind decidable. Therefore, $A_{T M}$ is not Turing decidable either.
(b) ($\mathbf{1 5}$ points) Show that language A_{2} is Turing recognizable.

Solution: I'll reduce A_{2} to $A_{T M}$. Let $M_{A 2}$ be a TM that does the following on input M :

1. If M is not a valid Turing machine description, then $M_{A 2}$ rejects immediately.
2. Otherwise, $M_{A 2}$ construct the description of a TM, M^{\prime} that does the following:
```
for(each string w\in\mp@subsup{\Sigma}{}{*}) {
    run M on input w for at most }|w\mp@subsup{|}{}{|w|}\mathrm{ moves.
    if(M halts after at most |w\mp@subsup{|}{}{|w|}\mathrm{ moves)}
            accept;
}
```

Note that M^{\prime} accepts M iff there is some string w such that M accepts w after at most $|w|^{|w|}$ moves.
3. If $M^{\prime} \# M \in A_{T M}$, then $M_{A 2}$ accepts. Otherwise, $M_{A 2}$ rejects.

Checking that M is a valid Turing machine description is Turing computable. Furthermore, the construction of the description of M^{\prime} from the description of M is Turing computable. Thus, this is a reduction from A_{2} to $A_{T M}$. The language $A_{T M}$ is Turing-recognizable; therefore, A_{2} is Turingrecognizable as well.

3. (40 points)

(a) ($\mathbf{1 0}$ points) Show that the class of Turing-decidable languages is closed under complement.

Solution: Let A be a Turing-decidable language. Because A is Turing-decidable, there is some TM that decides A, let

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{r e j e c t}\right)
$$

be TM that decides A. Because M either accepts or rejects for any given input (i.e. it never loops), we can exchange the accept and reject states to obtain a TM that decides \bar{A}. Let

$$
\bar{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {reject }}, q_{a c c e p t}\right)
$$

Because M never loops, \bar{M} never loops. Thus, $L(\bar{M})=\overline{L(M)}=\bar{A}$ and \bar{M} decides \bar{A}. This shows that \bar{A} is Turing-decidable. Because A is an arbitrary, Turing-decidable language, this shows that the class of Turing-decidable languages is closed under complement.
(b) ($\mathbf{1 0}$ points) Show that the class of Turing-decidable languages is closed under star.

Solution: Let A be a Turing-decidable language, and let M be a TM that decides A. We showed in class (and Sipser section 3.2) that non-deterministic TMs (NTMs) are equivalent to deterministic ones. I'll describe a NTM, $M_{A^{*}}$ that decides A^{*}. With input $w, M_{A^{*}}$ does the following:

1. If $w=\epsilon$, then $M_{A^{*}}$ accepts.
2. Otherwise, $M_{A^{*}}$ divides w into strings $w_{1}, w_{2}, \ldots w_{k}$ such that $w_{1} \cdot w_{2} \cdots w_{k}=w$, and for each $1 \leq i \leq k,\left|w_{i}\right|>0$.
2.a. For each $1 \leq i \leq k, M_{A^{*}}$ runs M on w_{i}.
2.b. If M accepts all of the w_{i} 's, then $M_{A^{*}}$ accepts w.
2.c. Otherwise, M rejects w.

Because M never loops, TM $M_{A^{*}}$ never loops, and $L\left(M_{A^{*}}\right)=A^{*}$. Thus, A^{*} is Turing-decidable which shows that the class of Turing-decidable languages is closed under star.
(c) ($\mathbf{1 0}$ points) Show that the class of Turing-recognizable languages is not closed under complement.

Solution: For the sake of contradiction, assume that the Turing-recognizable langauges are closed under complement. I will use this assumption to construct a TM that decides $A_{T M}$, a contradiction.
The language $A_{T M}$ is Turing-recognizable. This means that we can construct a TM, $M_{A_{T M}}$ that when run with input $M \# w$ accepts if M is the description of a TM that accepts when run with input w. $M_{A_{T M}}$ may either reject or loop if M does not accept w. If the class of Turing-recognizable languages were closed under complement, then $\overline{A_{T M}}$ would be Turing-recognizable. Let $M_{\overline{A_{T M}}}$ be a TM that recognizes $\overline{A_{T M}}$.
Now, I'll construct $D_{A_{T M}}$, a TM that decides $A_{T M}$. On input $w D_{A_{T M}}$ simulates both $M_{A_{T M}}$ and $M_{\overline{A_{T M}}}$ running with input w. In particular, $D_{A_{T M}}$ alternates between simulating a step for $M_{A_{T M}}$ and simulating a step for $M_{\overline{A_{T M}}}$. Note that either $x \in L\left(M_{A_{T M}}\right)$ or $x \in L\left(M_{\overline{A_{T M}}}\right)$. Thus, $D_{A_{T M}}$ will eventually simulate a step where one of these machines halts. If the halting step is that $M_{A_{T M}}$ accepts x (or $M_{\overline{A_{T M}}}$ rejects x), then $D_{A_{T M}}$ accepts. If the halting step is that $M_{\overline{A_{T M}}}$ accepts x (or $M_{A_{T M}}$ accepts x), then $D_{A_{T M}}$ rejects. Thus, $D_{A_{T M}}$ is a decider for $A_{T M}$. We know that $A_{T M}$ is undecidable. Therefore, $D_{A_{T M}}$ cannot exist, which refutes our assumption that the Turing-recognizable languages are closed under complement.
This shows that the Turing-recognizable languages are not closed under complement.
(d) ($\mathbf{1 0}$ points) Show that the class of Turing-recognizable languages is closed under star.

Solution: My solution is essentially the same as for showing that the Turing-decidable langauges are closed under star. In this case, if the input string w is in A^{*}, then each substring will be accepted by M. Because M recognizes A, it will halt for each substring. Thus, we can construct a recognizer from A^{*} given a recognizer for A.
4. ($\mathbf{3 0}$ points) A linear bounded automaton (LBA) is a Turing Machine with a bounded tape; it cannot move its head past either end of the input string. For example, you can assume that the input string has the form $\vdash v \dashv$ where \vdash is a special left endmarker (that appears nowhere in v) and \dashv is a special right endmarker (that appears nowhere in v). All transitions from \vdash preserve the \vdash and move the head to the right. All transitions from \dashv preserve the \dashv and move the head to the left. Let

$$
A_{L B A}=\{M \# w \mid M \text { is an LBA that accepts } w\} .
$$

$A_{L B A}$ is Turing decidable (see Sipser Lemma 5.8). Thus, the halting problem for LBA's is Turing decidable as well.
Prove that there is some language, B such that B is Turing decidable but B is not accepted by any LBA. (Hint: use diagonalization.)

Solution: Let

$$
B=\{[M] \mid[M] \text { describes an LBA that does not accept when run with }[M] \text { as its input }
$$

B is not accepted by any LBA.
For the sake of contradiction, assume otherwise. Let M_{B} be an LBA that accepts B. Run M_{B} with its own description, $\left[M_{B}\right]$ as its input. If M_{B} accepts, then $\left[M_{B}\right] \notin B$. On the other hand, if M_{B} rejects or loops, then $\left[M_{B}\right] \in B$. Both cases lead to a contradiction. This shows that there is no LBA that accepts B.
B is Turing-decidable As noted above, $A_{L B A}$ is Turing-decidable. As shown in problem 3a, the Turingdecidable languages are closed under complement. Thus, $\overline{A_{L B A}}$ is Turing-decidable. Let $M_{\overline{A_{L B A}}}$ be a TM that decides $\overline{A_{L B A}}$.
I'll now construct at TM, T_{B} that decides B. On input x, T_{B} constructs the string $x \# x . T_{B}$ then runs $M_{\overline{A_{L B A}}}$ on $x \# x$. If $M_{\overline{A_{L B A}}}$ accepts $x \# x$, then T_{B} accepts x. Otherwise T_{B} rejects. Because $M_{\overline{A_{L B A}}}$ is a decider, $M_{\overline{A_{L B A}}}$ never loops. Thus, T_{B} never loops. T_{B} is a TM that decides B. This shows that B is Turing decidable.

