
CpSc 421 Homework 7 Solutions

1. (15 points) Let boolean halt(String src, String input) be a Java method that is supposed to return true if the Java
program with the source code given by stringsrc halts when run with inputinput and returns false otherwise.
We showed in class that it is impossible to write such a methodthat will work for all stringssrc andinput. Now,
we will add one more restriction:halt fails (i.e. throws an exception) if the string forinput is the source code for
a Java program. For example,halt could run the Java compiler oninput and if it compiles successfully, thenhalt
throws aInputWrittenByASmartAleckException. In all other cases,halt should correctly answer whether the
program given bysrc halts when run with inputinput.

Show that even with this restriction, it is impossible to write a methodhalt that returns true if the program
described bysrc halts when run with inputinput and returns false otherwise.

Solution: All we have to do is modify stringinput so that it won’t be a valid Java program and make our
counter-example generator undo that change. For example, no Java program can start with the character}.
So, we’ll make a version program that discards the first character of its input and uses that assrc and uses
the entire string asinput. Here’s the result:

boolean halt(String src, String input) {
/* whatever halt does */

}
boolean undecidableForHalt(String input) {

if(halt(input.substring(1), input)) while(1);
return(true);

}

Let S be the source for this program, and invokeundecidableForHalt with the parameter} · S Then,
undecidableForHalt will invoke halt(S, }·S). As with the original halting problem, we get a contradiction
no matter whathalt returns.

2. (15 points) In class, we constructed one example that must cause a proposed function forhalt to give the wrong
answer or never terminate. Show that for any proposed implementation ofhalt there must be an infinite number
of inputs that cause it to give the wrong answer or never terminate.

Solution: Suppose that there were only a finite number of input strings that causehalt to loop or give the
wrong answer. We can divide these into two finite subsets: those that describe halting computations and
those that don’t. Any finite language is regular, and any regular language is decidable. Thus, we can first
test to see if the input is in one of these two sets, and if it is,give the appropriate answer. Otherwise, we
run the original machine. Note that our initial screening ensures that we never run the original machine on
an input where it fails to give the right answer. Thus, this would decide the halting problem. We know that
the halting problem is undecidable. Therefore, the set of input string that cause any proposed solution to
the halting problem to give a wrong answer or fail to terminate must be infinite.



3. (35 points) Download the programmystery.java from

http://www.ugrad.cs.ubc.ca/∼cs421/hw/7/mystery.java

Look over the code, compile it, and run it – I promise that it’snot malicious.

1. (5 points) What does the program do? Just give a one-sentence description of the output that it produces.
You’ll get to explainhow it does it in the rest of the question.

Solution: The program prints a copy of its source code tostdout.

2. (5 points) What is strings for?

Solution: The strings holds strings that match the source code for methodsfix(), x(), andmain(), in
other word, fore everything declared afters itself.

3. (5 points) What does methodx() do?
A one sentence answer is enough. You’ll get to explain the details in the next three questions.

Solution: Methodx() produces the string that is the source code formystery.java.

4. (5 points) What do the first fourbuf.append(. . . )’s in x() do?

Solution: They append tobuf the line ofmystery.java up to the declaration ofString[] s but not the
values of the initializers for this array.

5. (5 points) What does the firstfor loop inx() do?

Solution: It appends tobuf the lines ofmystery.java that initializeString[] s.

6. (5 points) What does the secondfor loop inx() do?

Solution: It appends tobuf the source code for everything else declared inmystery.java.

7. (5 points) What does methodfix(String) fix?

Solution: It translates special characters in Java strings:", \, and\n into the\... sequences needed
by the Java compiler.

4. (20 points, Sipser Problem 3.9)
Let ak-PDA be a pushdown automaton that hask stacks. Thus a0-PDA is an NFA and a1-PDA is a conventional
PDA. You already know that1-PDAs are more powerful (recognize a larger class of languages) than0-PDAs.

1. (10 points) Show that2-PDAs are more powerful than1-PDAs.

Solution: A 2-PDA can recognize the languageanbncn. Clearly it can use its finite control to make
sure that its input is ina∗b∗c∗. While reading the string ofa’s, the 2-PDA pushes a marker onto its
first stack for eacha that it reads. While reading the string ofb’s, it pops a marker off of its first stack
and pushes a marker onto its second stack for eachb that it reads. In this way, the 2-PDA checks to
make sure that the number ofa’s matches the number ofb’s, and it has a record of how manyb’s it
has seen. Finally, while reading the string ofc’s, it pops a marker off of its second stack for eachc
that it reads. It does this to confirm that the number ofc’s is the same as the number ofbs.

2. (10 points) Show that3-PDAs are not more powerful than2-PDAs.
(Hint: Simulate a Turing machine tape with two stacks.)

Solution: A 2-PDA can simulate a Turing machine. Let the first stack represent everything on the tape to
the left of the tape head and the second stack represents the current tape symbol and everything to the
right. From now on, I’ll refer to these as the “left stack” and“right stack.”
Initially, the 2-PDA pushes a special end-marker onto each stack. Next, it reads its input, pushing
every symbol that it reads onto the left stack. Then, it can pop all of those symbols off of the left stack
and push them onto the right stack. It’s now in a configurationwhere the input string is on the right
stack.
To simulate a move of the Turing machine, the 2-PDA checks thevalue on the top of the right stack
and its current state. If the TM will move to the left for this combination, then the 2-PDA does the
following:



• Pop the symbol off the top of the right stack.

• Push the symbol that the TM would write onto its tape onto the right stack.

• Pop a symbol off of the left stack. If this symbol is the endmarker, it just pushes it back onto the
left stack. Otherwise, it pushes whatever symbol it encountered onto the right stack.

On the other hand, if the TM will move to the right, then the 2-PDA does the following:

• Pop the symbol off the top of the right stack.

• Push the symbol that the TM would write onto its tape onto the left stack.

If the 2-PDA pops the end-symbol off of its right stack, it pushes the end-symbol back on to the right
stack and then pushes a blank onto the right stack. This simulates having an infinite number of blanks
on the tape.
If the 2-PDA ever reaches an accepting state for the TM, then it accepts the string. If it reaches a
rejecting state, it rejects the string. Note that a 2-PDA canloop, just like the Turing machine it is
simulating.
OK, now we’ve shown that a 2-PDA can simulate a TM that has a single tape. We know that a TM
with a single tape can simulate a TM with multiple tapes. It’ssimple to simulate a 3-PDA using a TM
with four tapes: one tape for the input, and the other three for the three stacks. Thus, a 2-PDA can
simulate a 3-PDA, and therefore a 3-PDA is no more powerful than a 2-PDA.

Note: A shorter answer would show in part (a) that a 2-PDA can simulate a TM, and just state that TMs can
recognize languages that 1-PDAs cannot.

5. (20 points, Sipser Problem 3.11)
A Turing machine with doubly infinite tapeis similar to an ordinary Turing machine, but its tape is infinite to the
left as well as to the right. The tape is initially filled with blanks except for the portion that contains the input.
Computation is defined as usual except that the head never encounters an end to the tape as it moves leftward.
Show that this type of Turing machine recognizes the class ofTuring-recognizable languages.

Solution: A TM with a doubly infinite tape can be simulated by a TM with twotapes. We’ll call the tapes
the left tape and the right tape. We’ll call the machine with the doubly-infinite tapeM±infinity and the
machine with two tapesM2. Initially, the right tape ofM2 holds the input string followed by an infinite
string of blanks, and the left tape holds an inifinite string of blanks. M2 first moves every symbol of the
input one position to the right and writes a special end-marker in front of the input string on the right tape.
It also writes an end marker on the first square of the left tape. It moves the head of the right tape to the
first symbol of the input string (or the first blank if the inputstring is empty), and it moves the head of the
left tape to the first blank.M2 uses its finite state to keep track of whether the left tape or the right tape is
the currently active tape. Initially, the right tape is the active one.

To simulate a move ofM±∞, M2 checks the symbol under the head of the active tape. If it is anend-
marker, it moves the head one position to the right and switches to the other tape as the active tape.
Otherwise, if the right tape is active,M2 does the same thing on that tape asM±∞ would do on its tape.
Finally, if the left tape is active,M2 does the same thing on that tape as theM±∞ would do on its tape,
except that ifM±∞ would move to the left,M2 moves to the right, and vice-versa.

Any transition to the accepting state ofM±∞ causesM2 to transition to its accepting state and likewise
for transitions to the rejecting state ofM±∞.

6. (30 points, Sipser Problem 3.14)
A queue automatonis like a push-down automaton except that the stack is repoaced by a queue. Aqueueis a
tape allowing symbols to be written only on the left-hand endand read only at the right-hand end. Each write
operation (we’ll call it apush) adds a symbol to the left-hand end of the queue, and each readoperation (we’ll
call it apull) reads and removes a symbol at the right-hand end. As with a PDA, the input is placed on a separate
read-only input tape, and the head on the input tape can only move from left to right. The input tape contains a
cell with a blank symbol following the input, so that the end of the input can be detected. A queue automaton



accepts its input by entering a special accept state at any time. Show that a language can be recognized by a
deterministic queue automaton iff the language is Turing recognizable.

Solution: First, I’ll show that a queue automaton can simulate a TM. Then, I’ll show that a TM can simulate a
queue automaton. This shows that the two types of machines are equivalent.

Initially, the queue automaton marks the first input symbol (possibly a blank). It then pulls three symbols
and stores them in its finite state — I’ll call these three symbols “left”, “middle” and “right”. If it encoun-
ters a blank before pulling three symbols, it sets the remaining symbols (i.e. right and possibly middle)
to blank. The queue machine also keeps track of the TM’s stateusing its finite state. The queue machine
repeats the following actions until it reaches the accept state or the reject state:

• if the middle symbol isnot marked, then the machine pushes its left symbol into the queue, transfers
its middle symbol to the left symbol, transfers the right symbol to the middle symbol, and pulls a new
right symbol from the queue.

• if the middle symbolis marked, then the machine determines what the TM would do for the current
state and input symbol:

– If the TM would move to the left, then the queue automaton marks its left symbol and pushes it
into the queue. It transfers the symbol that the TM would write onto its tape to the left symbol,
transfers the right symbol to the middle symbol, and pulls a new right symbol from the queue.

– If the TM would move to the right, then the queue automaton pushes its left symbol into the
queue, transfers the symbol that the TM would write onto its tape to the left symbol, transfers the
right symbol to the middle symbol and marks it, and pulls a newright symbol from the queue.

Note that in either case, the queue automaton first pushes a symbol into the queue and then pulls one
from the queue. This guarantees that there the queue will be non-empty whenever the automaton
attempts a pull.

With these actions, the queueu automaton simulates the TM. Basically, if the TM moves to the right, the
queue automaton pushes the left symbol onto the stack, pullsa new right symbol and continues tracking
the TM. If the TM moves to the left, then the queue automaton has cycles through the queue to get back
to where the TM moved. Marking symbols in the queue to indicate the current head position of the TM
allows the queue automaton to know when it has made it to the right place.

Now, I’ll show how a TM can simulate a deterministic queue automaton. Of course, the TM uses its tape
to simulate a queue. Initially, the TM marks the first symbol of the input to indicate that it is at the head
of the queue and the blank after the last symbol to indicate that it is the tail. If the input is empty, then the
TM marks the initial blank as being both the head and the tail.

When the queue automaton does a pull, the TM scans its tape to find the tape square marked as the head
of the queue. If this square is also marked as the tail, then the queue is empty. The problem didn’t say
what a queue automaton does if it tries to pull from an empty queue — I’ll assume that this is grounds for
immediate rejection of the input. Otherwise, the TM recordsthe symbol at the head of the queue in its
finite state and moves the head-of-queue marker one positionto the right.

When the queue automaton does a push, the TM scans its tape to finde the tape square marked as the tail of
the queue. It erases the tail marker and writes the pushed symbol on the next square to the right, marking
it as the new tail. Note that this will always be overwriting ablank.

With this construction, the segment of the tape holding the queue contents drifts to the right. This is not a
problem because the TM has an infinite amount of tape.


