CpSc 421 Homework 7 Solutions

1. (15 points) Letboolean halt(String src, String input) be a Java method that is supposed to return true if the Java
program with the source code given by strgrg halts when run with inpuinput and returns false otherwise.
We showed in class that it is impossible to write such a methatwill work for all stringssrc andinput. Now,
we will add one more restrictiornalt fails (i.e. throws an exception) if the string fimput is the source code for
a Java program. For exampllt could run the Java compiler aémput and if it compiles successfully, thémalt
throws alnputWrittenByASmartAleckException. In all other cased)alt should correctly answer whether the
program given brc halts when run with inputput.

Show that even with this restriction, it is impossible to tera methochalt that returns true if the program
described byrc halts when run with inpunput and returns false otherwise.

Solution: All we have to do is modify stringnput so that it won't be a valid Java program and make our
counter-example generator undo that change. For examplawa program can start with the charagter
So, we’ll make a version program that discards the first dtaraf its input and uses that ac and uses
the entire string amput. Here’s the result:

boolean halt(String src, String input) {
/* whatever halt does */
}

boolean undecidableForHalt(String input) {
if(halt(input.substring(1), input)) while(1);
return(true);

Let S be the source for this program, and invakedecidableForHalt with the parametet - S Then,
undecidableForHalt will invoke halt(S, }-S5). As with the original halting problem, we get a contradintio
no matter whahalt returns.

2. (15 pointg) In class, we constructed one example that must cause ag@donction fotalt to give the wrong
answer or never terminate. Show that for any proposed imgiéation ofhalt there must be an infinite number
of inputs that cause it to give the wrong answer or never teaisi

Solution: Suppose that there were only a finite number of input strihgs ¢auseéhalt to loop or give the
wrong answer. We can divide these into two finite subsetssethibat describe halting computations and
those that don’t. Any finite language is regular, and any laaganguage is decidable. Thus, we can first
test to see if the input is in one of these two sets, and if ikee the appropriate answer. Otherwise, we
run the original machine. Note that our initial screeninguges that we never run the original machine on
an input where it fails to give the right answer. Thus, thisngalecide the halting problem. We know that
the halting problem is undecidable. Therefore, the setmidtistring that cause any proposed solution to
the halting problem to give a wrong answer or fail to terménaust be infinite.

3. (35 points) Download the programystery.java from
http://www.ugrad.cs.ubc.ca/~cs421/hw/7/mystery.java
Look over the code, compile it, and run it — | promise thatritg malicious.
1. (5 points) What does the program do? Just give a one-sentence destopthe output that it produces.
You'll get to explainhowit does it in the rest of the question.

Solution: The program prints a copy of its source codstaout.
. (56 points) What is strings for?

Solution: The strings holds strings that match the source code for mettingy x(), andmain(), in

other word, fore everything declared afteitself.

. (5 points) What does methoxl() do?
A one sentence answer is enough. You'll get to explain thaildeh the next three questions.

Solution: Methodx() produces the string that is the source coderiigstery.java.
. (6 points) What do the first foubuf.append(. ..)’s in x() do?

Solution: They append tdouf the line of mystery.java up to the declaration dbtring[] s but not the
values of the initializers for this array.

. (5 points) What does the firdor loop inx() do?
Solution: It appends tduf the lines ofmystery.java that initialize String|[] s.
. (5 points) What does the secoridr loop inx() do?
Solution: It appends tduf the source code for everything else declarenhyrstery.java.
. (5 points) What does methofix(String) fix?
Solution: It translates special characters in Java stririgd:, and\ n into the\ . . . sequences needed
by the Java compiler.

4. (20 points Sipser Problem 3.9)
Let ak-PDA be a pushdown automaton that katacks. Thus 8-PDA is an NFA and a-PDA is a conventional
PDA. You already know that-PDAs are more powerful (recognize a larger class of langsptpar0-PDAs.

N

w

N

(631

»

~

1. (10 pointg Show tha-PDAs are more powerful thairPDAs.

Solution: A 2-PDA can recognize the languagéb™c™. Clearly it can use its finite control to make
sure that its input is im*b*c*. While reading the string ad’s, the 2-PDA pushes a marker onto its
first stack for eacl that it reads. While reading the stringlo§, it pops a marker off of its first stack
and pushes a marker onto its second stack for batiat it reads. In this way, the 2-PDA checks to
make sure that the number @k matches the number &fs, and it has a record of how maiws it
has seen. Finally, while reading the stringcdd, it pops a marker off of its second stack for each
that it reads. It does this to confirm that the numbet'sfis the same as the numbertas.

2. (10 pointg) Show tha3-PDAs are not more powerful th&PDAs.
(Hint: Simulate a Turing machine tape with two stacks.)

Solution: A 2-PDA can simulate a Turing machine. Let the first stack regaresverything on the tape to
the left of the tape head and the second stack representsriieaictape symbol and everything to the
right. From now on, I'll refer to these as the “left stack” dmigjht stack.”

Initially, the 2-PDA pushes a special end-marker onto eaabks Next, it reads its input, pushing
every symbol that it reads onto the left stack. Then, it cgmadbof those symbols off of the left stack
and push them onto the right stack. It's now in a configuratityere the input string is on the right
stack.

To simulate a move of the Turing machine, the 2-PDA checkv#hee on the top of the right stack
and its current state. If the TM will move to the left for thismbination, then the 2-PDA does the
following:

e Pop the symbol off the top of the right stack.
e Push the symbol that the TM would write onto its tape onto itpetrstack.

e Pop a symbol off of the left stack. If this symbol is the endkeayit just pushes it back onto the
left stack. Otherwise, it pushes whatever symbol it encenaat onto the right stack.

On the other hand, if the TM will move to the right, then the RAdoes the following:

e Pop the symbol off the top of the right stack.

e Push the symbol that the TM would write onto its tape onto dfiestack.
If the 2-PDA pops the end-symbol off of its right stack, it pas the end-symbol back on to the right
stack and then pushes a blank onto the right stack. This ategihaving an infinite number of blanks
on the tape.
If the 2-PDA ever reaches an accepting state for the TM, thendepts the string. If it reaches a
rejecting state, it rejects the string. Note that a 2-PDA lcap, just like the Turing machine it is
simulating.
OK, now we've shown that a 2-PDA can simulate a TM that has glsitape. We know that a TM
with a single tape can simulate a TM with multiple tapes.difaple to simulate a 3-PDA usinga TM
with four tapes: one tape for the input, and the other thre¢hie three stacks. Thus, a 2-PDA can
simulate a 3-PDA, and therefore a 3-PDA is no more powerfarn i 2-PDA.

Note: A shorter answer would show in part (a) that a 2-PDA can sitewdal M, and just state that TMs can
recognize languages that 1-PDAs cannot.

5. (20 points, Sipser Problem 3.11)
A Turing machine with doubly infinite tapgsimilar to an ordinary Turing machine, but its tape is itéino the
left as well as to the right. The tape is initially filled withalmks except for the portion that contains the input.
Computation is defined as usual except that the head neveuetgrs an end to the tape as it moves leftward.
Show that this type of Turing machine recognizes the cla§sghg-recognizable languages.

Solution: A TM with a doubly infinite tape can be simulated by a TM with teapes. We'll call the tapes
the left tape and the right tape. We'll call the machine wite tdoubly-infinite tape\/t;, finit, and the
machine with two taped/,. Initially, the right tape ofA/; holds the input string followed by an infinite
string of blanks, and the left tape holds an inifinite stririgplanks. M5 first moves every symbol of the
input one position to the right and writes a special end-markfront of the input string on the right tape.
It also writes an end marker on the first square of the left.tdpmoves the head of the right tape to the
first symbol of the input string (or the first blank if the inmiting is empty), and it moves the head of the
left tape to the first blankl/, uses its finite state to keep track of whether the left tapberight tape is
the currently active tape. Initially, the right tape is tfetiee one.

To simulate a move oM., M> checks the symbol under the head of the active tape. If it israh
marker, it moves the head one position to the right and sestdio the other tape as the active tape.
Otherwise, if the right tape is activd/; does the same thing on that tapelds ., would do on its tape.
Finally, if the left tape is active), does the same thing on that tape as ilie., would do on its tape,
except that ifA/. ., would move to the left)Ms moves to the right, and vice-versa.

Any transition to the accepting state df. ., causes\/, to transition to its accepting state and likewise
for transitions to the rejecting state df. .

6. (30 points, Sipser Problem 3.14)
A gqueue automatois like a push-down automaton except that the stack is requblg a queue. Aueueis a
tape allowing symbols to be written only on the left-hand and read only at the right-hand end. Each write
operation (we’ll call it apush adds a symbol to the left-hand end of the queue, and eaclopeadtion (we'll
call it apull) reads and removes a symbol at the right-hand end. As withfg #@ input is placed on a separate
read-only input tape, and the head on the input tape can oovgfirom left to right. The input tape contains a
cell with a blank symbol following the input, so that the erfdtee input can be detected. A queue automaton

accepts its input by entering a special accept state at arey tShow that a language can be recognized by a
deterministic queue automaton iff the language is Turinggaizable.

Solution: First, I'll show that a queue automaton can simulate a TM.ri[i@ show that a TM can simulate a
gueue automaton. This shows that the two types of machieesgarivalent.

Initially, the queue automaton marks the first input symipolssibly a blank). It then pulls three symbols
and stores them in its finite state — I'll call these three sgtableft”, “middle” and “right”. If it encoun-
ters a blank before pulling three symbols, it sets the reimgiaymbols (i.e. right and possibly middle)
to blank. The queue machine also keeps track of the TM’s gkite its finite state. The queue machine
repeats the following actions until it reaches the accegesir the reject state:

o if the middle symbol isrnot marked, then the machine pushes its left symbol into the ejueansfers
its middle symbol to the left symbol, transfers the right sito the middle symbol, and pulls a new
right symbol from the queue.

¢ if the middle symbols marked, then the machine determines what the TM would ddh®current
state and input symbol:

— If the TM would move to the left, then the queue automaton méaskleft symbol and pushes it
into the queue. It transfers the symbol that the TM wouldevoihto its tape to the left symbol,
transfers the right symbol to the middle symbol, and pullea right symbol from the queue.

— If the TM would move to the right, then the queue automatorhpsasts left symbol into the
queue, transfers the symbol that the TM would write ontcaietto the left symbol, transfers the
right symbol to the middle symbol and marks it, and pulls a nigivt symbol from the queue.

Note that in either case, the queue automaton first pusheslaosynto the queue and then pulls one
from the queue. This guarantees that there the queue wilbbheempty whenever the automaton
attempts a pull.

With these actions, the queueu automaton simulates the Heic8lly, if the TM moves to the right, the
gueue automaton pushes the left symbol onto the stack, guksv right symbol and continues tracking
the TM. If the TM moves to the left, then the queue automatadyales through the queue to get back
to where the TM moved. Marking symbols in the queue to in@i¢ae current head position of the TM
allows the queue automaton to know when it has made it to ¢ place.

Now, I'll show how a TM can simulate a deterministic queueoamdton. Of course, the TM uses its tape
to simulate a queue. Initially, the TM marks the first symbiolhe input to indicate that it is at the head
of the queue and the blank after the last symbol to indicateitlis the tail. If the input is empty, then the
TM marks the initial blank as being both the head and the tail.

When the queue automaton does a pull, the TM scans its tapadtthi tape square marked as the head
of the queue. If this square is also marked as the tail, themjtleue is empty. The problem didn’t say
what a queue automaton does if it tries to pull from an empgugu— I'll assume that this is grounds for
immediate rejection of the input. Otherwise, the TM recdfds symbol at the head of the queue in its
finite state and moves the head-of-queue marker one positite right.

When the queue automaton does a push, the TM scans its tapdddHe tape square marked as the tail of
the queue. It erases the tail marker and writes the pushelddddyom the next square to the right, marking
it as the new tail. Note that this will always be overwritinglank.

With this construction, the segment of the tape holding tilreug contents drifts to the right. This is not a
problem because the TM has an infinite amount of tape.

