
CpSc 421 Homework 5 Solution Set

1. (30 points, from Sipser, problem 2.6)
Give context free grammars generating the following languages (for parts (a) and (b), the alphabet is{a,b}; for
part (c), the alphabet is{a,b,#}):

(a) (10 points) {w | ∃n ≥ 0. (w = anb2n) ∨ (w = a3nbn)}.

Solution:
S → X | Y, S is the start symbol
X → ǫ | a Xbb, X generatesanb2n

Y → ǫ | aaa Y b, Y generatesa3nbn

(b) (10 points) The complement of{w | ∃n ≥ 0. w = anbn}.

Solution:
S → X | Y | Z, S is the start symbol
X → ǫ | WbaW X generates strings that don’t matcha∗b∗

Y → aAC, Y generates stringsaibj with i > j

Z → CBb, Z generates stringsaibj with i < j

W → ǫ | aW | Wb, W generates all strings
A → ǫ | aA A generatesa∗

B → ǫ | Bb A generatesa∗

C → ǫ | aCb, A generatesakbk

(c) (10 points) {x1#x2# · · ·xk | eachxi ∈ {a,b}∗, and for somei andj, xi = xR

j }.

Solution:
S → BWA, S is the start symbol;
B → ǫ | X#B, B generates the string beforexi;
W → #M | aWa | bWb, W generatesxi#Mxj with xi = xR

j ;
A → ǫ | A#X, B generates the string afterxj ;
X → ǫ | aX | bX, X generates(a ∪ b)∗;
M → ǫ | aX# M generates string betweenxi andxj .

Note thatM andA are identical. I wrote them as separate variables to have theidea of “before”,
“middle” and “after” strings.

2. (30 points) Give a PDA for each language from question 1. You can just draw a transition diagram where edges
are labeled as in Sipser.

(a) (10 points) {w | ∃n ≥ 0. (w = anb2n) ∨ (w = a3nbn)}.

Solution:

a,ε

b, ε

b, ε

a,ε

b, ε

b, ε

ε,ε

ε,ε

εε,

εε,εε,εε,

ε,ε

The machine starts with a non-deterministic choice. The left branch matchesanb2n and the right side
matchea3nbn.

(b) (10 points) The complement of{w | ∃n ≥ 0. w = anbn}.

Solution:

ε,ε

b, ε
εε,

a,ε b, ε

εε,
a,ε ε

b, ε

a,ε

b, ε

My machine is based on a machine to recognizeanbn with transitions to the accept state for everything
where that machine would have rejected.

(c) (10 points) {x1#x2# · · ·xk | eachxi ∈ {a,b}∗, and for somei andj, xi = xR

j }.

Solution:

ε,ε

#,ε ε

a,ε ε
b,ε ε
#,ε ε

a,ε a
b,ε b

#,ε ε

a,a ε
b,b ε

ε,ε

ε,ε

#,ε ε

a,ε ε
b,ε ε
#,ε ε

ε, ε

#,ε ε

a,ε ε
b,ε ε
#,ε ε

#,ε ε
b,ε ε
a,ε ε

0 1 2 3 4 5 6

ε

My machine starts in state 0 from which it pushes a end-of-stack marker, , onto the stack and move
to state 1. State 1 consumes input untilxi at which point the machine moves to state 2; the move from
state 0 directly to state 2 is for the case thatxi is the firstx string.
In state 2, the machine reads a string ofa’s andb’s, pushing them on the stack to compare later with
xj . Upon encountering a#, the machine moves to state 3 which consumes thex’s betweenxi andxj .
The move from state 2 directly to state 4 handles two special cases. Taking that arrow while reading a
#handles the case thatj = i+1. Taking the arrow while reading aa, bor ǫ handles the case thati = j

(and therefore thatxi is a palindrome). The problem as quoted from Sisper doesn’t say whether or not
the language should include the case thati = j. Either answer is acceptable. One point of extra-credit
should be granted for stating that this is an issue and stating how their solution handles it.
In state 4, the machine popsa’s andb’s off the stack verifying thatxj indeed matchesxR

i . State 5
discards the remaining input. The arrow from state 5 directly to state 6 handles the case thatxj is the
lastx string.

3. (20 points) Sipser, problem 1.13.
Let G = (V, Σ, R, S) be the following grammar:V = {S, T, U}; Σ = {0,#}; andR is the set of rules:

S → TT | U

T → 0T | T0 | #
U → 0U00 | #

(a) (10 points) DescribeL(G) in English.

Solution: L(G) = 0n#02n ∪ 0∗#0∗#0∗. In English,G generates all strings that are either have some
number of0’s followed by a# followed by twice that many zeros, or that have two#’s. To see this,
note thatT generates0∗#0∗.

(b) (10 points) Prove thatL(G) is not regular.

Solution:
Let pbe a proposed pumping lemma constant forL(G).

Let w = 0p#02p.

Let x, y andz be strings such thatw = xyz, |y| > 1 and|xy| ≤ p.

xy ∈ 0∗. Thus, pumping the string changes the number of zeros to the left of the# without changing
the number of zeros on the right side or the number of#’s. This creates a string that is not in
L(G).

4. (25 points, from Sipser, problem 2.19)
Let G be the CFG

S → aSb | bY | Y a
Y → bY | aY | ǫ

(a) (15 points) Give a simple description ofL(G) in English. Give a short explanation of your description.

Solution: L(G) is the complement ofanbn.
Consider a stringw that is generated byG. Let k be the largest integer such that there is av such that
w = akvbk. This means that the derivation ofw starts withk applications of the ruleS → aSb,
andS must derivev. v must either start with abor end with ana. In the first case,v is generated by
S → bY because the variableY generates any string. Likewise, in the second case,v is generated by
Y a. This shows that any string that is not inanbn is generated byG.
If w ∈ anbn, thenw is not generated byG because neitherS → bY norS → Y a can ever be applied.

(b) (10 points) Use your answer to part (a) to give a CFG forL(G), the complement ofL(G).

Solution: Let H be the grammar with start variableSH and rules:

SH → ǫ | aSHb.

L(H) = L(G) as required.

5. (20 points), Sipser, problem 2.25
For any languageA, let SUFFIX (A) = {v | ∃u. uv ∈ A}. Show that the class of context-free languages is
closed under theSUFFIX operation.

Solution: Let A be a CFG and letP = (Q, Σ, Γ, δ, q0, F) be a PDA that recognizesA. We will create a new
PDA, PSUFFIX that recognizesSUFFIX (A). The main idea is thatP ′ introduces a new set of states,Q′,
that have mirror the states ofP . The complete set of states forP ′ is Q∪Q′. If P has a transition from state
qi to qj when reading symbolc, thenP ′ has that transition as well and a transition fromq′i to q′j on inputǫ
— both transitions do the same thing to the stack. Finally,P ′ has transitions fromq′i to qi on inputǫ that
don’t modify the stack. The effect of theQ′ states and transitions is that they allowP ′ to simulate what
could happen on any input (i.e., the prefix,u). P ′ must transition to a state inQ to read any real input. The
states inQ are used to check the suffix.

The paragraph above is a sufficient answer to the question. Here’s an elaboration for those who want to
see more details: Assume thatQ = {q1, q2, . . . , qk}, and letQ′ = {q′

1
, q′

2
, . . . , q′k}. Let P ′ = (Q ∪

Q′, Σ, Γ, δ′, q′
0
, F) with

δ′(q′i, ǫ, d) = {(q′j , e) | ∃c ∈ Σ ∪ {ǫ}. (qj , e) ∈ δ(qi, c, d)},
if d 6= ǫ

δ′(q′i, c, d) = ∅, if c 6= ǫ

δ′(q′i, ǫ, ǫ) = {(q′j , e) | (∃c ∈ Σ ∪ {ǫ}. (qj , e) ∈ δ(qi, c, ǫ))} ∪ {(qi, ǫ)}
δ′(p, c, d) = δ(p, c, d), if p ∈ Q

Here’s a transition diagram for a PDA built according to thisconstruction that acceptsSUFFIX (anan):

εa,ε

εε,ε εε,ε εε,ε εε,ε

a,ε

εε,ε0’ 1’ 2’ 3’

0 1 2 3
ε,ε εε,ε ,ε ε

,ε εε,ε

b, ε

b,

6. (25 points), Sipser, problem 2.27
Let G = (V, Σ, R,STMT) be the following grammar:

STMT → ASSIGN | IfThen | IfThenElse

IfThen → if condition then STMT

IfThenElse → if condition then STMT else Stmt

ASSIGN → a:=1

Σ = {if, condition then, else, a:=1}
V = {STMT , IfThen , IfThenElse , ASSIGN }

G is a natural-looking grammar for a fragment of a programminglanguage, butG is ambiguous.

(a) Show thatG is ambiguous.

Solution: The string

if condition then if condition then a:=1 else a:=1

Has two derivations:

First derivation:
STMT

→ IfThen

→ if condition then STMT

→ if condition then IfThenElse

→ if condition then if condition then STMT else STMT

→ if condition then if condition then ASSIGN else STMT

→ if condition then if condition then a:=1 else STMT

→ if condition then if condition then a:=1 else ASSIGN

→ if condition then if condition then a:=1 else a:=1

Second derivation:
STMT

→ IfThenElse

→ if condition then STMT else STMT

→ if condition then IfThen else STMT

→ if condition then if condition then STMT else STMT

→ if condition then if condition then ASSIGN else STMT

→ if condition then if condition then a:=1 else STMT

→ if condition then if condition then a:=1 else ASSIGN

→ if condition then if condition then a:=1 else a:=1

The first derivation corresponds to

if condition then
{ if condition then a:=1 else a:=1 }

and the second derivation corresponds to:

if condition then
{ if condition then a:=1 }

else a:=1

where I’ve added “{” and “}” to each to make the grouping clear. This is known as the “dangling
else” problem (seehttp://en.wikipedia.org/wiki/Dangling else).

(b) Give a new, unambiguous grammar for the same language.

Solution: Let G′ = (V, Σ, R,STMT) be the following grammar:

STMT → ASSIGN | IfThen | IfThenElse

IfThen → if condition then STMT

IfThenElse → if condition then STMT else STMT2

ASSIGN → a:=1
STMT2 → ASSIGN | IfThenElse

Σ = {if, condition then, else, a:=1}
V = {STMT , IfThen , IfThenElse , ASSIGN }

GrammarG′ generates the same language as grammarG. VariableSTMT2 generates the same strings as
STMT except that it can’t generate anIfThen . This forces the “else” clause of anIfThenElse statement
to be bound the nearestif. This corresponds to the way that this is handled in programming languages
that don’t have an explicitend orendif for if–statements.

