CpSc 421 Homework 5 Solution Set

1. (30 points, from Sipser, problem 2.6)
Give context free grammars generating the following lamgsgfor parts (a) and (b), the alphabefasb}; for
part (c), the alphabet i&a, b, #}):

(@) (10 points) {w | In > 0. (w = a"b?") v (w = a3"b™)}.

Solution: _
S — X|Y, S is the start symbol
X — e|aXbb, X generatea"b?"
Y — e¢|aaaYb, Y generatea®'b”

(b) (10 points) The complement ofw | 3n > 0. w = a"b"}.

Solution:
S —- X|Y|Z S is the start symbol
X — ¢e|WbaWw X generates strings that don't matcth*
Y — aAC, Y generates strings'’ with i > j
Z — CBb, Z generates stringg’b’ with i < j
W — e|aW | Wb, W generates all strings
A — e|ad A generateg*
B — €| Bb A generateg*
C — ¢|aCh, A generatea®b*
(c) (10 points) {x1#xo# - - - xy, | eachy; € {a,b}*, and for somé andj, z; = x?}.
Solution:
S — BWA, S is the start symbol;
B — €| X#B, B generates the string befarg
W — #M |aWa|bWb, W generates#Mz; withz; = xf
A — €| A#X, B generates the string after;
X — e]aX|bX, X generatesa Ub)*;
M — e|laX# M generates string betweenandz;.

Note thatM and A are identical. | wrote them as separate variables to haval#zeof “before”,
“middle” and “after” strings.

2. (30 points) Give a PDA for each language from question 1. You can just@ &ansition diagram where edges
are labeled as in Sipser.

(@) (10 points) {w | 3n > 0. (w = a"b?") v (w = a®"b")}.
Solution:

The machine starts with a non-deterministic choice. Theblefnch matches™5?" and the right side
matchea>"b".

(b) (10 points) The complement ofw | 3n > 0. w = a"b"}.
Solution:

My machine is based on a machine to recogniZzg® with transitions to the accept state for everything
where that machine would have rejected.

(c) (10 points) {z1#ao# - - - . | eachx; € {a,b}*, and for some andj, z; = xf}.

Solution:
#.,e—~¢ a,e—¢
gEe—~nm €,6~¢€ b,e—¢ em—¢g
(1) D) (2) A (B
@ cge~m 1 #,e—¢ 2 #.e—¢ 3 #,e—¢ 4 #.e—¢ 85 @
a,e—¢€ a,e—a a,e—¢ a,a—¢ a,e—¢€
b,e—~¢ b,e—b b,e—~¢ b,b—~¢ b,e—~¢
#,e—~¢ #,e—~¢ #,e—~¢

My machine starts in state 0 from which it pushes a end-afkstaarkerm, onto the stack and move
to state 1. State 1 consumes input untiat which point the machine moves to state 2; the move from
state O directly to state 2 is for the case thais the firstz string.

In state 2, the machine reads a stringasf andb’s, pushing them on the stack to compare later with
xj. Upon encountering #, the machine moves to state 3 which consumesthbetween:; andz;.

The move from state 2 directly to state 4 handles two speasds Taking that arrow while reading a
#handles the case that= i + 1. Taking the arrow while readinga bor e handles the case that j

(and therefore that; is a palindrome). The problem as quoted from Sisper doeaythether or not
the language should include the case that;. Either answer is acceptable. One point of extra-credit
should be granted for stating that this is an issue and gtati their solution handles it.

In state 4, the machine popss andb’s off the stack verifying that; indeed matches™. State 5
discards the remaining input. The arrow from state 5 diyeotktate 6 handles the case thats the
lastz string.

3. (20 points) Sipser, problem 1.13.
LetG = (V, %, R, S) be the following grammart’” = {S,T,U}; ¥ = {0,#}; andR is the set of rules:

S — TT | U
T — 0T | TO | #
U — 0U00 | #

(a) (10 points) DescribeL(G) in English.
Solution: L(G) = 0"#02" U 0*#0*#0*. In English,G generates all strings that are either have some

number of0’s followed by a# followed by twice that many zeros, or that have t#e. To see this,
note thatl’ generate®*#0*.

(b) (10 paints) Prove thatl(G) is not regular.
Solution:
Let pbe a proposed pumping lemma constantfo).
Letw = OP#02P,
Letx, y andz be strings such that = xyz, |y| > 1 and|zy| < p.
xy € 0*. Thus, pumping the string changes the number of zeros tethefithe# without changing

the number of zeros on the right side or the numbe#'sf This creates a string that is not in
L(G).

4. (25 points, from Sipser, problem 2.19)

Let G be the CFG
S — aSb | bY | Ya

Y — by | aYy | e

(a) (15 points) Give a simple description df(G) in English. Give a short explanation of your description.

Solution: L(G) is the complement ai”b™.
Consider a stringy that is generated bg. Let k be the largest integer such that there issach that
w = aFvb*. This means that the derivation of starts withk applications of the rule&s — aShb,
and.S must derivev. v must either start with or end with ara. In the first casey is generated by
S — bY because the variablé generates any string. Likewise, in the second casegenerated by
Ya. This shows that any string that is notdfib™ is generated by
If w e a™b", thenw is not generated b because neitheé¥ — bY norS — Ya can ever be applied.

(b) (10 points) Use your answer to part (a) to give a CFG 1g(7), the complement of (G).
Solution: Let H be the grammar with start variab¥; and rules:

Sy — ¢ | aSHb

L(H) = L(G) as required.

5. (20 points), Sipser, problem 2.25
For any languagel, let SUFFIX(A) = {v | Ju. uv € A}. Show that the class of context-free languages is
closed under th6 UFFIX operation.

Solution: Let A be a CFG and leP = (Q, X, T, 4, qo, F') be a PDA that recognize$. We will create a new
PDA, Psyrrix thatrecognize§UFFIX (A). The main idea is tha®’ introduces a new set of stat&g),,
that have mirror the states &. The complete set of states fBf is QUQ’. If P has a transition from state
¢i to ¢; when reading symbel, thenP’ has that transition as well and a transition frgjio q;- on inpute
— both transitions do the same thing to the stack. Fin@lyhas transitions from; to ¢; on inpute that
don’t modify the stack. The effect of thg@’ states and transitions is that they allé® to simulate what
could happen on any input (i.e., the prefiy, P’ must transition to a state ifj to read any real input. The
states inQ) are used to check the suffix.

The paragraph above is a sufficient answer to the questiore’dHan elaboration for those who want to

see more details: Assume that= {q1,q2,...,qx}, and letQ’ = {¢|,¢,...,q.}. LetP = (QU
Q, 3, T,¥, q), F) with

Fdhed) = {(dhe)|FeeSUe) (ge) € 5aic,d),
if d+#e

5’(qz,c d = 0, if c#£¢
(Q7 €) = {(q;,e) | (HCGZU{E}' (qj7€)eg(incaE))}U{(qiaE)}
(p,c d) = 6(]?7 Cy d)a ifpe@

Here’s a transition diagram for a PDA built according to ttigistruction that accept/FFIX (a™a™):

as»' bO»s

ss»}(ss»\i/ ss»i
ce—n 8 €,6—€ 8 mE—-¢

a,c—~e be—e¢

6. (25 points), Sipser, problem 2.27
LetG = (V,X, R, STMT) be the following grammar:

STMT — ASSIGN | IfThen | IfThenFElse
IfThen — if condition then STMT
IfThenElse — if condition then STMT el se Stmt
ASSIGN — a:=1
> = {if,condition then, el se, a: =1}
V. = {STMT, IfThen, IfThenFElse, ASSIGN}

G is a natural-looking grammar for a fragment of a programntémguage, bu is ambiguous.

(&) Show thatz is ambiguous.

Solution: The string
if condition then if condition then a:=1 else a:=1
Has two derivations:

First derivation:

STMT
— IfThen
— if condition then STMT
— i f condition then IfThenElse
— if condition then if condition then STMT else STMT
— if condition then if condition then ASSIGN else STMT
— if condition then if condition then a:=1 else STMT
— if condition then if condition then a:=1 el se ASSIGN
— if condition then if condition then a:=1 else a:=1

Second derivation:

STMT
— IfThenkFElse
— i f condition then STMT else STMT
— if condition then IfThen el se STMT
— if condition then if condition then STMT else STMT
— if condition then if condition then ASSIGN else STMT
— if condition then if condition then a:=1 else STMT
— if condition then if condition then a:=1 el se ASSIGN
— if condition then if condition then a:=1 else a:=1

The first derivation corresponds to

if condition then
{if condition then a:=1 else a:=1 }

and the second derivation corresponds to:
if condition then
{if condition then a:=1 }
else a: =1
where I've added {" and “}" to each to make the grouping clear. This is known as the “tiagg
else” problem (sebttp://en.wikipedia.org/wiki/Dangling_else).

(b) Give a new, unambiguous grammar for the same language.
Solution: Let G’ = (V, X, R, STMT) be the following grammar:

STMT

— ASSIGN | IfThen | IfThenElse
IfThen — if condition then STMT
IfThenElse — i f condition then STMT else STMT2
ASSIGN — a:=1
STMT2 — ASSIGN | IfThenElse
> = {if,condition then, el se, a:=1}
V. = {STMT, IfThen, IfThenFElse, ASSIGN}

GrammarG’ generates the same language as grantiafariable STM T2 generates the same strings as
STMT exceptthatit can’t generate d@fi'hen. This forcestheél se” clause of an/fThenElse statement

to be bound the neareist . This corresponds to the way that this is handled in programptanguages
that don’t have an expliciénd orendi f fori f —statements.

