1. (25 points) Sipser, problem 1.31.

For any string $w=w_{1} w_{2} \ldots w_{n}$, the reverse of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w^{\mathcal{R}}=$ $w_{n} \ldots w_{2} w_{1}$. For any language A, let

$$
A^{\mathcal{R}}=\left\{w^{\mathcal{R}} \mid w \in A\right\}
$$

Prove that if A is regular, then $A^{\mathcal{R}}$ is regular as well.
2. ($\mathbf{2 5}$ points) Sipser, problem 1.32.

Let

$$
\Sigma_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \cdots\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
$$

Σ_{3} contains all size 3 columns of 0 s and 1 s . A string of symbols in Σ_{3} gives three rows of 0 s and 1 s . Consider each row to be a binary number with the most significant bit first. For example, let

$$
w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

The first row of w is the binary representation of 7 , the second row corresponds to 5 , and the third row corresponds to 12 .
Let

$$
B=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the sum of the top two rows }\right\}
$$

Show that B is regular. (Hint: Working with $B^{\mathcal{R}}$ is easier. You can use the result that you were asked to prove for question 1).
3. (25 points) Let u and v be strings with $|u|=|v|$. We define weave (u, v) as shown below:

$$
\begin{aligned}
\operatorname{weave}(\epsilon, \epsilon) & =\epsilon \\
\operatorname{weave}(x \cdot a, y \cdot b) & =\operatorname{weave}(x, y) \cdot a \cdot b
\end{aligned}
$$

For example, weave $(\mathrm{cat}, \mathrm{dog})=\operatorname{cdaotg}$ and weave(srn,tig) $=$ string.
For any language A, let

$$
\operatorname{half}(A)=\left\{u \mid \exists v \in \Sigma^{|u|} . \operatorname{weave}(u, v) \in A\right\}
$$

Prove that if A is regular, then $\operatorname{half}(A)$ is regular as well.
4. (10 points) (from Sipser 1.20).

For each of the following languages, give two strings that are members and two strings that are not members a total of four strings for each part. Assume that the alphabet $\Sigma=\{a, b\}$ in all parts.
(a) $a^{*} b^{*}$.
(b) $a^{*}(b a)^{*} b^{*}$.
(c) $a^{*} \cup b^{*}$.
(d) $(\mathrm{a} a \mathrm{a})^{*}$.
(h) $(\mathrm{a} \cup \mathrm{ba} \cup \mathrm{b} b) \Sigma^{*}$.
5. (15 points) (from Sipser 1.22).

In certain programming languages, comments appear between delimiters such as / \# and / \#. (We're using / \# instead of $/ *$ as for comments in C to avoid confusion of the character $*$ with the regular expression operator, *.) Let C be the language of all valid delimited comment strings. A member of C must begin with /\# and end with \# / but have no intervening \# / . For simplicity, we'll say that comments themselves are written with only the symbols a, b; hence the alphabet of C is $\Sigma=\{\mathrm{a}, \mathrm{b}, /, \#\}$.
(a) Give a DFA that recognized C.
(b) Give a regular expression that generates C.

Note: As described by Sipser, the text of the comment cannot contain the symbols / or \#. Thus, / \#abbabaab\# / is a valid comment but / \#ab/babb\#ba\#\#/ is not a valid comment. You may make this assumption in your solution - it makes the solution easier.

