1. (30 points) Using the recursion theorem, write a short proof for Rice's theorem.

Note that Sipser states Rice's theorem in problem 5.28 and gives a proof. Sipser's proof does not use the recursion theorem. Your solution must use the recursion theorem (and your proof should be shorter than Sipser's).
2. ( $\mathbf{3 0}$ points, from Sipser problem 5.29) Use Rice's theorem to prove the undecidability of the two languages below:
(a) (15 points) $\{[M] \mid[M]$ describes a TM and $1011 \in L(M)\}$.
(b) ( $\mathbf{1 5}$ points) $A L L_{T} M=\left\{[M] \mid[M]\right.$ describes TM and $\left.L(M)=\Sigma^{*}\right\}$.
3. (40 points) Consider a variation on Post's Correspondence Problem where each pair of strings can be used at most once. We'll call this 1PCP. An instance of 1 PCP consists of $k$ pairs of strings, $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, $\ldots\left(x_{k}, y_{k}\right)$. A solution to 1PCP consists of $m$ distinct integers $i_{1}, i_{2}, \ldots i_{m}$, with $m \leq k$ such that

$$
x_{i_{1}} \cdot x_{i_{2}} \cdots x_{i_{m}}=y_{i_{1}} \cdot y_{i_{2}} \cdots y_{i_{m}}
$$

A non-deterministic Turing machine can guess the values for $m$ and $i_{1} \ldots i_{m}$, verify that for $a \neq b, i_{a} \neq i_{b}$, and verify that the concatenation of the $x$ strings matches the concatenation of the $y$ strings. Clearly, these verification steps can be done in polynomial time. Thus, 1PCP is in NP.
In this problem, you will show that 1 PCP is NP hard and thus NP complete. In particular, show how the Hamiltonian cycle problem can be reduced to $1 P C P$. Let $G=(V, E)$ where $V=v_{1}, v_{2}, \ldots v_{h}$, and $E \subseteq V \times V$ be a graph. $G$ has a Hamiltonian cycle iff there exists a permuation $p_{1}, \ldots p_{h}$ of $1 \ldots h$ such that for each $i \in 1 \ldots h-1$, there is an edge connecting $v_{p_{i}}$ and $v_{p_{i+1}}$ (i.e. $\left(v_{p_{i}}, v_{p_{i+1}}\right) \in E$ ) and there is an edge from $v_{p_{h}}$ to $v_{p_{1}}$.
Show a simple (and it must be polynomial time!) reduction from Hamiltonian cycle to 1PCP.
4. ( 50 points) We can formalize the description of DFAs in a manner very similar to how we formalized the description of TMs.
(a) ( $\mathbf{1 0}$ points) Let $\Sigma=\{0,1$, , \#, (, ) $\}$ be an alphabet for writing descriptions of DFAs. To describe a DFA, $D=\left(Q_{D}, \Sigma_{D}, \delta_{D}, q_{0, D}, F_{D}\right)$, write the string

$$
s_{Q, D}, s_{\Sigma, D}, s_{\delta, D}, s_{q_{0}, D}, s_{F, D}
$$

where
$s_{Q, D}$ is the binary string for $\mid Q_{D}$.
$s_{\Sigma, D}$ is the binary string for $\mid \Sigma_{D}$.
$s_{\delta, D}$ is a string of tuples of the form $\left(q, c, q^{\prime}\right)$ where $q$ is a binary string of length $\left\lceil\log _{2}\left|Q_{D}\right|\right\rceil, c$ is a
binary string of length $\left\lceil\log _{2}\left|\Sigma_{D}\right|\right\rceil$, and $q^{\prime}$ is a binary string of length $\left\lceil\log _{2}\left|Q_{D}\right|\right\rceil$. The tuple $\left(q, c, q^{\prime}\right)$
indicates that $\delta_{D}(q, c)=q^{\prime}$. Furthermore, these tuples are listed in $s_{\delta, D}$ in lexigraphical order.
$s_{q_{0}, D}$ is a binary string for the state $q_{0, D}$.
$s_{F, D}$ is a comma separated list of binary strings representing the states in $F_{D}$. This list is in ascending order.
Give the string that describes the DFA below:

(b) ( $\mathbf{2 0}$ points) Let
$A_{R E G, n, m}=\left\{D \# w \mid D \in \Sigma^{*}\right.$ describes a DFA with at most $n$ states and an input alphabet with at most $m$ symbols that accepts the string described by $w\}$.

Note that $\Sigma_{D}$ may have symbols that are not in $\Sigma$. Thus, to describe an input string for $D$, use a comma separated list of binary strings, where each binary string has length $\left\lceil\log _{2}\left|\Sigma_{D}\right|\right\rceil$. For example, the string $a b b a c$ in $\{a, b, c\}^{*}$ is encoded as $00,01,01,00,10$.
Show that for any fixed $n$ and $m, A_{R E G, n, m}$ is a regular language.
(c) (20 points) Use a diagonalization argument to prove that any DFA that recognizes $A_{R E G, n, m}$ must have more than $n$ states. (Assume $n, m>0$.)

