Homework 10

- CpSc 421
 - 1. (Sipser problem 5.21, **20 points**) Let $AMBIG_{CFG} = \{[G] \mid G \text{ is an ambiguis CFG}\}$ (where [G] denotes a string that represents the grammar). Show that $AMBIG_{CFG}$ is undecidable. **Hint:** You can use a reduction from PCP. Given an instance

Ρ	=	$\left\{ \left \right. \right. \right.$	t_1], [t_2		t_k)
			b_1		b_2],	•••	b_k

of the Post Correspondence Problem, construct a CFG G with the rules

$$S \rightarrow T \mid B$$

$$T \rightarrow t_1 T \mathbf{a}_1 \mid \dots \mid t_k T \mathbf{a}_k \mid t_1 \mathbf{a}_1 \mid \dots \mid t_k \mathbf{a}_k$$

$$B \rightarrow b_1 B \mathbf{a}_1 \mid \dots \mid b_k B \mathbf{a}_k \mid b_1 \mathbf{a}_1 \mid \dots \mid b_k \mathbf{a}_k,$$

where a_1, \ldots, a_k are new terminal symbols. Prove that this reduction works.

- 2. (Sipser problems 5.22 and 5.23, 20 points)
 - (a) Show that A is Turing-recognizable iff $A \leq_m A_{TM}$.
 - (b) Show that A is Turing-decidable iff $A \leq_m 0^* 1^*$.
- 3. (Sipser problem 5.24, **20 points**) Let $J = \{w \mid \text{either } w = 0x \text{ for some } x \in A_{TM} \text{ or } w = 1y \text{ for some } y \notin A_{TM} \}$. Show that neither J nor \overline{J} is Turing-recognizable.
- 4. (Sipser problem 5.34, **30** points) Consider the problem of determing whether a PDA accepts some string of the form $\{ww \mid w \in \{0,1\}^*\}$. Use the computation history method to show that this problem is undecidable.