
CpSc 421 Homework 10 Solutions

1. (Sipser problem 5.21,20 points) Let AMBIGCFG = {[G] | G is an ambiguis CFG} (where[G] denotes a
string that represents the grammar). Show thatAMBIGCFG is undecidable.
Hint: You can use a reduction from PCP. Given an instance

P =
{

t1
b1

,
t2
b2

, . . .
tk
bk

}
,

of the Post Correspondence Problem, construct a CFGG with the rules

S → T | B
T → t1Ta1 | . . . | tkTak | t1a1 | . . . | tkak

B → b1Ba1 | . . . | bkBak | b1a1 | . . . | bkak ,

wherea1, . . . ,ak are new terminal symbols. Prove that this reduction works.

Solution:

If P is solvable, thenG is ambiguous.
Let i1, i2, . . . in be a solution toP . Let

w = ti1ti2 · · · tin
ain

· · ·ai2ai1

= bi1bi2 · · · bin
ain

· · ·ai2ai1

The stringw has two derivations:

S
S→T−→ T

T→ti1T ai1−→ ti1Tai1

T→ti2T ai2−→ ti1ti2Tai2ai1

T→···−→ ti1ti2 . . . T · · ·ai2ai1

T→tin ain−→ ti1ti2 · · · tinain · · ·ai2ai1

and
S

S→B−→ B
B→bi1Bai1−→ bi1Bai1

B→bi2Bai2−→ bi1bi2Bai2ai1

B→···−→ bi1bi2 . . . B · · ·ai2ai1

B→bin ain−→ bi1bi2 · · · binain · · ·ai2ai1

Thus,G is ambibuous.
If G is ambiguous, thenP is solvable.

Let GT be the same grammar asG except that it hasT as the start variable and likewise forGB .
GT is unambiguous.

This is because the string ofai’s at the end of any string derived fromGT describes the sequence
of steps taken in the derivation. Thus, two strings can have the same suffix ofai’s iff they have
the same derivation. This means that ifGT generatesx andy andx = y, thenx andy have the
same derivation. Therefore,GT is unambiguous.



GB is unambiguous.
The proof is equivalent to that forGT .

Thus, ifw has two derivations inG, one must start with the ruleS → T and the other with the rule
S → B. This means that there existi1, . . . im such thatw = ti1 · · · tim

aim
· · ·ai1 andj1, . . . jn such

thatw = bj1 · · · bjn
ajn

· · ·aj1 . Because theai’s don’t appear in any of thet’s or b’s, we have that
m = n, i1 = j1, i2 = j2, . . . andin = jn. This means that

ti1ti2 · · · tin
= bi1bi2 · · · bin

This is a solution toP . Thus,P is solvable as required.

2. (Sipser problems 5.22 and 5.23,20 points)

(a) Show thatA is Turing-recognizable iffA ≤m ATM .

Solution:
If A ≤m ATM , thenA is Turing recognizable.

Assume thatA ≤m ATM . I’ll constructMA, a TM that recognizesA. On inputw, MA uses the
reduction forA ≤m ATM to compute the description of a Turing machineM ′ and a stringw′

such thatM ′ acceptsw′ iff w ∈ A. MA then runsM ′. If M ′ accepts (resp. rejects or loops), then
MA accepts (resp. rejects or loops).MA acceptsw iff w ∈ A; otherwiseMA rejects or loops.
MA is a TM that recognizesA, thusA is Turing-recognizable.

If A is Turing-recognizable, thenA ≤m ATM .
Assume thatA is Turing-recognizable. Thus, there is some TM that recognizesA. Let MA be
such aTM , and let[MA] denote the string that describesMA. For any string,w, w ∈ A iff
[MA]#w ∈ ATM . Clearly, the function that mapsw to [MA]#w is Turing computable. Thus,
we’ve shown thatA ≤m ATM as required.

Note: these proofs are nearly trivial. They’re just using the definitions of reduction, Turing-recognizable,
andATM . The point behind this problem is to make sure that you understand what it means for one
language to be Turing-reducible to another.

(b) Show thatA is Turing-decidable iffA ≤m 0∗1∗.

Solution:
If A ≤m 0∗1∗, thenA is Turing-decidable.

Assume thatA ≤m 0∗1∗. I’ll construct MA, a TM that decidesA. On inputw, MA uses the
reduction forA ≤m 0∗1∗ to compute a new string,x such thatx ∈ 0∗1∗ iff w ∈ A. MA then
uses its finite control to implement a DFA that determines whether or notx ∈ 0∗1∗. If x ∈ 0∗1∗,
thenMA accepts; otherwise,MA rejects. Note that the reduction step can’t loop (by the definition
of Turing-reducible) and the DFA step can’t loop (because the DFA reads one symbol ofx at each
step and decides when it finishes readingx). Thus,MA never loops. Therefore,MA is a decider
for A which means thatA is Turing-decidable.

If A is Turing-decidable, thenA ≤m 0∗1∗.
Assume thatA is Turing-decidable. Thus, there is some TM that decidesA. Let MA be such a
TM . To reduceA to 0∗1∗, construct a Turing machine,M , that does the following on inputw:
RunMA on inputw.
If MA acceptsw, erase the tape.
If MA rejectsw, erase the tape and write the string10 .
MA cannot loop, it’s a decider.

Thus, ifw ∈ A, thenM writesε on its tape, andε ∈ 0∗1∗. Otherwise,M writes01 on its tape,
and01 6∈ 0∗1∗. Thus,M reducesA to 0∗1∗.

Note: notice the cut-and-paste job I did to take the solution to part (a) and rewrite it into a solution for
part (b). While these proofs are very simple, they give you the basic template for reduction proofs.



3. (Sipser problem 5.24,20 points) LetJ = {w | eitherw = 0x for somex ∈ ATM or w = 1y for somey 6∈ ATM }.
Show that neitherJ norJ is Turing-recognizable.

Solution:

J is not Turing-recognizable.
We reduceATM to J by constructingMATM

, a TM that recognizesATM using MJ , a TM that
recognizesJ . On input[M ]#w, MATM

moves every input symbol on square to the right and writes a
0 on the leftmost square. It then moves its head to the leftmost square and runsMJ . If MJ accepts then
[M ]#w 6∈ ATM ⇔ [M ]#w ∈ ATM . We have reducedATM to J ; ATM is not Turing-recognizable,
therefore,J is not Turing-recognizable either.

J is not Turing-recognizable.
We use basically the same construction as before, but this time we replace[M ]#w with 0[M ]#w.

4. (Sipser problem 5.34,30 points) Consider the problem of determing whether a PDA accepts some string of the
form {ww | w ∈ {0, 1}∗}. Use the computation history method to show that this problem is undecidable.

Solution: Let h be a computational history. We can writeh as

h = # config0 # configR1 # config2 # configR3 # · · · configm #

(whereconfigm is reversed ifm is odd). LetM be at TM andw be a string. I’ll now describe a PDA,P ,
that accepts a string of the formhh iff h describes a valid computational history forM acceptingw.

Initially, P pushes each even numbered configuration onto its stack, and then pops each off while verifying
the subsequent odd configuration. The# symbols separate successive configurations; so,P knows when
to change from pushing to popping.

WhenP sees two consecutive# symbols, it skips the next configurationconfig0. It then pushes each of
the odd numbered confuration onto its stack, and then pops each off while verifying the subsequent even
configuration.

In the course of these actions,P also checks thatconfig0 is the correct initial configuration forM running
on inputw and thatconfigm is an accepting configuration. The languages corresponding to these checks
are regular, andP performs these checks using its finite state (see also HW 9, question 1).

P accepts a string of the formhh iff h is a valid computation history forM acceptingw.

Note thatP may accept strings that are not of the formhh whether or notM acceptsh. In particular, one
could runP on the input:

# config0 # configR1 # config2 ## config3 # config4 #

where

config0 is the correct initial configuration forM running with inputw.

config1 is the correct successor toconfig0.

config2 is an arbitrary accepting configuration forM . Note thatP does not verify thatconfig2 is a valid
successor ofconfig1.

config3 is an arbitrary configuration. As described above,P does not verify that this is the correct initial
configuration forM running with inputw.

config4 is an arbitrary accepting configuration forM . P does not verify thatconfig4 is a valid successor
of config3.

This string is not of the formww. P has no way to verify that its input is of the formww.


