1. (Sipser problem 5.21, 20 points) Let $A M B I G_{C F G}=\{[G] \mid G$ is an ambiguis CFG $\}$ (where $[G]$ denotes a string that represents the grammar). Show that $A M B I G_{C F G}$ is undecidable.
Hint: You can use a reduction from PCP. Given an instance

$$
P=\left\{\begin{array}{|c|}
\hline t_{1} \\
\hline b_{1} \\
\left.\hline, \frac{t_{2}}{b_{2}}, \ldots \begin{array}{|c|}
\hline t_{k} \\
\hline b_{k} \\
\hline
\end{array}\right\}, ~ \text {, }, ~ \\
\hline
\end{array}\right.
$$

of the Post Correspondence Problem, construct a CFG G with the rules

$$
\begin{aligned}
S & \rightarrow T \mid B \\
T & \rightarrow t_{1} T \mathbf{a}_{1}|\ldots| t_{k} T \mathbf{a}_{k}\left|t_{1} \mathbf{a}_{1}\right| \ldots \mid t_{k} \mathbf{a}_{k} \\
B & \rightarrow b_{1} B \mathbf{a}_{1}|\ldots| b_{k} B \mathbf{a}_{k}\left|b_{1} \mathbf{a}_{1}\right| \ldots \mid b_{k} \mathbf{a}_{k}
\end{aligned}
$$

where $\mathrm{a}_{1}, \ldots, \mathrm{a}_{k}$ are new terminal symbols. Prove that this reduction works.

Solution:

If P is solvable, then G is ambiguous.
Let $i_{1}, i_{2}, \ldots i_{n}$ be a solution to P. Let

$$
\begin{aligned}
w & =t_{i_{1}} t_{i_{2}} \cdots t_{i_{n}} \mathrm{a}_{i_{n}} \cdots \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}} \\
& =b_{i_{1}} b_{i_{2}} \cdots b_{i_{n}} \mathrm{a}_{i_{n}} \cdots \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}}
\end{aligned}
$$

The string w has two derivations:

$$
S \xrightarrow{\xrightarrow[T \rightarrow t_{i_{1}} T \mathrm{a}_{i_{1}}]{ }} \begin{array}{ll}
\xrightarrow{S \rightarrow T} & t_{i_{1}} T \mathrm{a}_{i_{1}} \\
& \xrightarrow{T \rightarrow t_{i_{2}} T \mathrm{a}_{i_{2}}}
\end{array} t_{i_{1} t_{i_{2}} T \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}}} \begin{array}{ll}
\xrightarrow{T \rightarrow \ldots} & t_{i_{1}} t_{i_{2}} \ldots T \cdots \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}} \\
& \xrightarrow{T \rightarrow t_{i_{n}} \mathrm{a}_{i_{n}}} \\
& t_{i_{1}} t_{i_{2}} \cdots t_{i_{n}} \mathrm{a}_{i_{n}} \cdots \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}}
\end{array}
$$

and

$$
\begin{array}{rll}
S & \xrightarrow{S \rightarrow B} & B \\
& \xrightarrow{B \rightarrow b_{i_{1}} B \mathrm{a}_{i_{1}}} & b_{i_{1}} B \mathrm{a}_{i_{1}} \\
& \xrightarrow{B \rightarrow b_{i_{2}} B \mathrm{a}_{i_{2}}} & b_{i_{1}} b_{i_{2}} B \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}} \\
& \xrightarrow{B \rightarrow \ldots} & b_{i_{1}} b_{i_{2}} \ldots B \cdots \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}} \\
& \xrightarrow{B \rightarrow b_{i_{n}} \mathrm{a}_{i_{n}}} & b_{i_{1}} b_{i_{2}} \cdots b_{i_{n}} \mathrm{a}_{i_{n}} \cdots \mathrm{a}_{i_{2}} \mathrm{a}_{i_{1}}
\end{array}
$$

Thus, G is ambibuous.
If G is ambiguous, then P is solvable.
Let G_{T} be the same grammar as G except that it has T as the start variable and likewise for G_{B}.
G_{T} is unambiguous.
This is because the string of a_{i} 's at the end of any string derived from G_{T} describes the sequence of steps taken in the derivation. Thus, two strings can have the same suffix of a_{i} 's iff they have the same derivation. This means that if G_{T} generates x and y and $x=y$, then x and y have the same derivation. Therefore, G_{T} is unambiguous.

G_{B} is unambiguous.

The proof is equivalent to that for G_{T}.
Thus, if w has two derivations in G, one must start with the rule $S \rightarrow T$ and the other with the rule $S \rightarrow B$. This means that there exist $i_{1}, \ldots i_{m}$ such that $w=t_{i_{1}} \cdots t_{i_{m}} \mathrm{a}_{i_{m}} \cdots \mathrm{a}_{i_{1}}$ and $j_{1}, \ldots j_{n}$ such that $w=b_{j_{1}} \cdots b_{j_{n}} \mathrm{a}_{j_{n}} \cdots \mathrm{a}_{j_{1}}$. Because the a_{i} 's don't appear in any of the t 's or b 's, we have that $m=n, i_{1}=j_{1}, i_{2}=j_{2}, \ldots$ and $i_{n}=j_{n}$. This means that

$$
t_{i_{1}} t_{i_{2}} \cdots t_{i_{n}}=b_{i_{1}} b_{i_{2}} \cdots b_{i_{n}}
$$

This is a solution to P. Thus, P is solvable as required.
2. (Sipser problems 5.22 and $5.23,20$ points)
(a) Show that A is Turing-recognizable iff $A \leq_{m} A_{T M}$.

Solution:

If $A \leq{ }_{m} A_{T M}$, then A is Turing recognizable.
Assume that $A \leq_{m} A_{T M}$. I'll construct M_{A}, a TM that recognizes A. On input w, M_{A} uses the reduction for $A \leq_{m} A_{T M}$ to compute the description of a Turing machine M^{\prime} and a string w^{\prime} such that M^{\prime} accepts w^{\prime} iff $w \in A . M_{A}$ then runs M^{\prime}. If M^{\prime} accepts (resp. rejects or loops), then M_{A} accepts (resp. rejects or loops). M_{A} accepts w iff $w \in A$; otherwise M_{A} rejects or loops. M_{A} is a TM that recognizes A, thus A is Turing-recognizable.
If A is Turing-recognizable, then $A \leq_{m} A_{T M}$.
Assume that A is Turing-recognizable. Thus, there is some TM that recognizes A. Let M_{A} be such a $T M$, and let $\left[M_{A}\right]$ denote the string that describes M_{A}. For any string, $w, w \in A$ iff $\left[M_{A}\right] \# w \in A_{T M}$. Clearly, the function that maps w to $\left[M_{A}\right] \# w$ is Turing computable. Thus, we've shown that $A \leq_{m} A_{T M}$ as required.
Note: these proofs are nearly trivial. They're just using the definitions of reduction, Turing-recognizable, and $A_{T M}$. The point behind this problem is to make sure that you understand what it means for one language to be Turing-reducible to another.
(b) Show that A is Turing-decidable iff $A \leq_{m} 0^{*} 1^{*}$.

Solution:

If $A \leq_{m} 0^{*} 1^{*}$, then A is Turing-decidable.
Assume that $A \leq_{m} 0^{*} 1^{*}$. I'll construct M_{A}, a TM that decides A. On input w, M_{A} uses the reduction for $A \leq_{m} 0^{*} 1^{*}$ to compute a new string, x such that $x \in 0^{*} 1^{*}$ iff $w \in A . M_{A}$ then uses its finite control to implement a DFA that determines whether or not $x \in 0^{*} 1^{*}$. If $x \in 0^{*} 1^{*}$, then M_{A} accepts; otherwise, M_{A} rejects. Note that the reduction step can't loop (by the definition of Turing-reducible) and the DFA step can't loop (because the DFA reads one symbol of x at each step and decides when it finishes reading x). Thus, M_{A} never loops. Therefore, M_{A} is a decider for A which means that A is Turing-decidable.
If A is Turing-decidable, then $A \leq_{m} 0^{*} 1^{*}$.
Assume that A is Turing-decidable. Thus, there is some TM that decides A. Let M_{A} be such a $T M$. To reduce A to $0^{*} 1^{*}$, construct a Turing machine, M, that does the following on input w :
Run M_{A} on input w.
If M_{A} accepts w, erase the tape.
If M_{A} rejects w, erase the tape and write the string 10 .
M_{A} cannot loop, it's a decider.
Thus, if $w \in A$, then M writes ϵ on its tape, and $\epsilon \in 0^{*} 1^{*}$. Otherwise, M writes 01 on its tape, and $01 \notin 0^{*} 1^{*}$. Thus, M reduces A to $0^{*} 1^{*}$.
Note: notice the cut-and-paste job I did to take the solution to part (a) and rewrite it into a solution for part (b). While these proofs are very simple, they give you the basic template for reduction proofs.
3. (Sipser problem 5.24, $\mathbf{2 0}$ points) Let $J=\left\{w \mid\right.$ either $w=0 x$ for some $x \in A_{T M}$ or $w=1 y$ for some $\left.y \notin A_{T M}\right\}$. Show that neither J nor \bar{J} is Turing-recognizable.

Solution:

J is not Turing-recognizable.
We reduce $\overline{A_{T M}}$ to J by constructing $M_{\overline{A_{T M}}}$, a TM that recognizes $\overline{A_{T M}}$ using M_{J}, a TM that recognizes J. On input $[M] \# w, M_{\overline{A_{T M}}}$ moves every input symbol on square to the right and writes a 0 on the leftmost square. It then moves its head to the leftmost square and runs M_{J}. If M_{J} accepts then $[M] \# w \notin A_{T M} \Leftrightarrow[M] \# w \in \overline{A_{T M}}$. We have reduced $\overline{A_{T M}}$ to $J ; \overline{A_{T M}}$ is not Turing-recognizable, therefore, J is not Turing-recognizable either.
\bar{J} is not Turing-recognizable.
We use basically the same construction as before, but this time we replace $[M] \# w$ with $0[M] \# w$.
4. (Sipser problem 5.34, $\mathbf{3 0}$ points) Consider the problem of determing whether a PDA accepts some string of the form $\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Use the computation history method to show that this problem is undecidable.

Solution: Let h be a computational history. We can write h as

$$
h=\# \text { config }_{0} \# \text { config }_{1}^{\mathcal{R}} \# \text { config }_{2} \# \text { config }_{3}^{\mathcal{R}} \# \cdots \text { config }_{m} \#
$$

(where config g_{m} is reversed if m is odd). Let M be at TM and w be a string. I'll now describe a PDA, P, that accepts a string of the form $h h$ iff h describes a valid computational history for M accepting w.
Initially, P pushes each even numbered configuration onto its stack, and then pops each off while verifying the subsequent odd configuration. The \# symbols separate successive configurations; so, P knows when to change from pushing to popping.
When P sees two consecutive \# symbols, it skips the next configuration config ${ }_{0}$. It then pushes each of the odd numbered confuration onto its stack, and then pops each off while verifying the subsequent even configuration.
In the course of these actions, P also checks that $c^{c o n f i g} g_{0}$ is the correct initial configuration for M running on input w and that config g_{m} is an accepting configuration. The languages corresponding to these checks are regular, and P performs these checks using its finite state (see also HW 9, question 1).
P accepts a string of the form $h h$ iff h is a valid computation history for M accepting w.
Note that P may accept strings that are not of the form $h h$ whether or not M accepts h. In particular, one could run P on the input:

$$
\# \operatorname{config}_{0} \# \operatorname{config}_{1}^{\mathcal{R}} \# \text { config }_{2} \# \# \operatorname{config}_{3} \# \text { config }_{4} \#
$$

where
config $_{0}$ is the correct initial configuration for M running with input w.
config $_{1}$ is the correct successor to config $_{0}$.
$\operatorname{config}_{2}$ is an arbitrary accepting configuration for M. Note that P does not verify that config $_{2}$ is a valid successor of config ${ }_{1}$.
config $_{3}$ is an arbitrary configuration. As described above, P does not verify that this is the correct initial configuration for M running with input w.
config $_{4}$ is an arbitrary accepting configuration for $M . P$ does not verify that config $_{4}$ is a valid successor of config_{3}.

This string is not of the form $w w . P$ has no way to verify that its input is of the form $w w$.

