CpSc 421 Homework 10 Solutions

1. (Sipser problem 5.2120 points) Let AMBIG cr¢ = {[G] | G is an ambiguis CFG (where[G] denotes a
string that represents the grammar). Show th&fBIG cr¢ is undecidable.
Hint: You can use a reduction from PCP. Given an instance

B t] [t tr

of the Post Correspondence Problem, construct a GR@th the rules

S — T | B

T — tlTal\ |tkTak|t1a1| \tkak

B — blBa1|...|kaak\b1a1|...|bkak,
whereay, ..., a; are new terminal symbols. Prove that this reduction works.

Solution:

If P is solvable, theriz is ambiguous.
Letiq,is,...17, be asolution taP. Let

The stringw has two derivations:

S — T
TﬂtilTail
— tilTail
T—t;,Ta;,
— ti, tiy T’ai2 a;,
T—s...
— tiltiQ...T"'aiZaZ‘l
Tat,;na,;n
— til tiz ‘e tin,ain e ai2ai1
and
B
s =¥ B
B—b;, Ba;
_)1—1> . bilBail
B—b;, Ba;
2 bilthaiQail
B
— bilbiz...B---aizail
B—b;,a;
=5 bigbiy b, @,

Thus,G is ambibuous.

If G is ambiguous, the®® is solvable.
Let Gt be the same grammar ésexcept that it hag" as the start variable and likewise fG1g.
G is unambiguous.
This is because the string af’s at the end of any string derived fro@ describes the sequence
of steps taken in the derivation. Thus, two strings can have the same sudfjis @f they have
the same derivation. This means thaf:if generates: andy andz = y, thenx andy have the
same derivation. Thereforé&; is unambiguous.

G B is unambiguous.

The proof is equivalent to that f@r .
Thus, ifw has two derivations id7, one must start with the rul® — 7 and the other with the rule
S — B. This means that there exist . . . i, such thatw =¢;, ---¢; a;, ---a&; andji,...j, such
thatw = b;, ---b;.4a;, ---a;,. Because the;’s don't appear in any of thés or b’'s, we have that
m=mn,i = j1, i3 = ja, ...andi, = j,. This means that

biyliy - ti, = bijbiy---b;

n

This is a solution taP. Thus, P is solvable as required.
2. (Sipser problems 5.22 and 5.28), points)

(a) Show that4 is Turing-recognizable ifd <,, A7y.
Solution:
If A <,, Ara,thenA is Turing recognizable.
Assume thad <,,, Ary. I'll construct M 4, a TM that recognizegl. On inputw, M 4 uses the
reduction forA <,, A7) to compute the description of a Turing machih& and a stringw’
such that\/’ acceptay’ iff w € A. M4 thenrunsM’. If M’ accepts (resp. rejects or loops), then
M 4 accepts (resp. rejects or loops) 4 acceptsw iff w € A; otherwiseM 4 rejects or loops.
M4 is a TM that recognized, thus A is Turing-recognizable.
If Ais Turing-recognizable, thed <,,, A7y,.
Assume thatd is Turing-recognizable. Thus, there is some TM that recognizeket M 4 be
such aI'M, and let[M 4] denote the string that describ&$,. For any stringw, w € A iff
[Mal#w € Aqy. Clearly, the function that maps to [M 4]#w is Turing computable. Thus,
we've shown thatd <,,, Ary, as required.
Note: these proofs are nearly trivial. They're just using the definitions of reduction, Turing-recognizable,
and A ry,. The point behind this problem is to make sure that you understand what it means for one
language to be Turing-reducible to another.

(b) Show thatd is Turing-decidable iffA <,, 0*1*.

Solution:
If A <, 01*, thenA is Turing-decidable.
Assume thatd <,, 0*1*. I'll construct M 4, a TM that decidesA. On inputw, M4 uses the
reduction forA <,, 0*1* to compute a new string; such thate € 0*1* iff w € A. M4 then
uses its finite control to implement a DFA that determines whether ar mo0*1*. If x € 0*1*,
thenM 4 accepts; otherwiséd 4 rejects. Note that the reduction step can't loop (by the definition
of Turing-reducible) and the DFA step can’t loop (because the DFA reads one symbail edch
step and decides when it finishes readingThus,M 4 never loops. Thereforé 4 is a decider
for A which means thatl is Turing-decidable.
If Ais Turing-decidable, thed <,,, 0*1*.
Assume thatd is Turing-decidable. Thus, there is some TM that decideset M4 be such a
T M. To reduceA to 0*1*, construct a Turing machin@/, that does the following on input:
Run M 4 on inputw.
If M4 acceptav, erase the tape.
If M4 rejectsw, erase the tape and write the stritg.
M 4 cannot loop, it's a decider.
Thus, ifw € A, thenM writese on its tape, and € 0*1*. Otherwise M writesO1 on its tape,
and0l1 ¢ 0*1*. Thus,M reducesA to 0*1*.
Note: notice the cut-and-paste job | did to take the solution to part (a) and rewrite it into a solution for
part (b). While these proofs are very simple, they give you the basic template for reduction proofs.

3. (Sipser problem 5.220 points) Let J = {w | eitherw = 0x for somer € Ay orw = 1y for somey ¢ Ary}.
Show that neithey nor J is Turing-recognizable.

Solution:

J is not Turing-recognizable.
We reduceA 7y to J by constructingM;—, a TM that recognizesiry, using M,;, a TM that
recognizes/. On input[M#w, M_— moves every input symbol on square to the right and writes a
0 onthe leftmost square. It then moves its head to the leftmost square and suis)M ; accepts then
[M|#w & Ay < [M]#w € Ary. We have reduced 7 to J; A1y, is not Turing-recognizable,

therefore,J is not Turing-recognizable either.

J is not Turing-recognizable.
We use basically the same construction as before, but this time we réplagev with 0[M]#w.

4. (Sipser problem 5.380 points) Consider the problem of determing whether a PDA accepts some string of the
form {ww | w € {0,1}*}. Use the computation history method to show that this problem is undecidable.

Solution: Let h be a computational history. We can writeas

h = # configy # configy # configy # configy # --- config,, #

(whereconfig,, is reversed ifn is odd). Let)M be at TM andw be a string. I'll now describe a PDA?,
that accepts a string of the forhk iff h describes a valid computational history faf acceptingw.

Initially, P pushes each even numbered configuration onto its stack, and then pops each off while verifying
the subsequent odd configuration. Hiesymbols separate successive configurationsPsknows when

to change from pushing to popping.

When P sees two consecutivé symbols, it skips the next configuratiennfig,. It then pushes each of

the odd numbered confuration onto its stack, and then pops each off while verifying the subsequent even
configuration.

In the course of these actionB,also checks thatonfig, is the correct initial configuration fa¥/ running
on inputw and thatconfig,, iS an accepting configuration. The languages corresponding to these checks
are regular, an@ performs these checks using its finite state (see also HW 9, question 1).

P accepts a string of the form iff h is a valid computation history fat/ acceptingw.

Note thatP may accept strings that are not of the folutnwhether or notV/ accepts:. In particular, one
could runP on the input:

configy # configy # config, #4# configs # config,

where

config, is the correct initial configuration fa¥/ running with inputw.
config, is the correct successor tonfig,,.

config, is an arbitrary accepting configuration fbf. Note thatP does not verify thatonfig, is a valid
successor ofonfig, .

configs is an arbitrary configuration. As described abaejoes not verify that this is the correct initial
configuration forM running with inputw.

config, is an arbitrary accepting configuration fof. P does not verify thatonfig, is a valid successor
of configs.

This string is not of the formww. P has no way to verify that its input is of the foraw.

