Homework 1

- 1. (25 points): (from Sipser, problem 1.6) Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet is $\{0, 1\}$.
 - (a) $\{w \mid w \text{ begins with a 1 and ends with a 0}\}$.
 - (b) $\{w \mid w \text{ contains at least three } 1s\}$.
 - (c) $\{w \mid w \text{ contains the substring 0101, i.e., } w = x0101y \text{ for some } x \text{ and } y\}.$
 - (d) $\{w \mid w \text{ has length at least 3 and its third symbol is a 0}\}$.
 - (e) $\{w \mid w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length} \}$.
- 2. (**30** points): (from Sipser, problem 1.7) Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts the alphabet is {0, 1}.
 - (a) The language of $\{w \mid w \text{ contains the substring } 0101, \text{ i.e., } w = x0101y \text{ for some } x \text{ and } y\}$ with five states.
 - (b) The language of $\{w \mid w \text{ contains an even number of 0s, or contains exactly two 1s}\}$ with six states.
 - (c) The language $\{0\}$ with two states.
 - (d) The language $0^*1^*0^+$ with three states.
 - (e) The language $\{\epsilon\}$ with one state.
 - (f) The language 0^* with one state.
 - Note: 0^* is a string of *zero* or more 0s. 0^+ is a string of *one* or more 0s.
- 3. (25 points): Closure properties of regular languages.
 - (a) (10 points) Prove that the regular languages are closed under complement. In other words, show that if L is a regular language, then the language \overline{L} is regular as well.
 - (b) (15 points) Prove that the regular languages are closed under intersection. In other words, show that if L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is regular as well.
- 4. (25 points): Let $M = \{Q, \{a\}, \delta, q_0, F\}$ be a finite automaton. Note that the alphabet for M has only one symbol, a. All strings in $\{a\}^*$ have the form a^m for some $m \in \mathbb{N}$.

Prove that there are sets $A, B \subset \mathbb{N}$, and an integer, k, such that:

- (a^m ∈ L(M)) ⇔ (m ∈ A) ∨ (∃i ∈ B. ∃j ∈ N. m = i + j * k). In English, this says that the length of any string in L(M) is either given by an element of A or is the sum of an element of B and a multiple of k.
- Every element of A or B is at most |Q|.
- Likewise, $k \leq |Q|$.

Hint: Think of what the state-transition diagram for M must look like, and consider what M does while reading a string, a^m .