1. (25 points): (from Sipser, problem 1.6) Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet is $\{0,1\}$.
(a) $\{w \mid w$ begins with a 1 and ends with a 0$\}$.
(b) $\{w \mid w$ contains at least three 1 s$\}$.
(c) $\{w \mid w$ contains the substring 0101 , i.e., $w=x 0101 y$ for some x and $y\}$.
(d) $\{w \mid w$ has length at least 3 and its third symbol is a 0$\}$.
(e) $\{w \mid w$ starts with 0 and has odd length, or starts with 1 and has even length $\}$.
2. (30 points): (from Sipser, problem 1.7) Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts the alphabet is $\{0,1\}$.
(a) The language of $\{w \mid w$ contains the substring 0101 , i.e., $w=x 0101 y$ for some x and $y\}$ with five states.
(b) The language of $\{w \mid w$ contains an even number of 0 s , or contains exactly two 1 s$\}$ with six states.
(c) The language $\{0\}$ with two states.
(d) The language $0^{*} 1^{*} 0^{+}$with three states.
(e) The language $\{\epsilon\}$ with one state.
(f) The language 0^{*} with one state.

Note: 0^{*} is a string of zero or more 0 s .
0^{+}is a string of one or more 0 s .
3. (25 points): Closure properties of regular languages.
(a) ($\mathbf{1 0}$ points) Prove that the regular languages are closed under complement. In other words, show that if L is a regular language, then the language \bar{L} is regular as well.
(b) ($\mathbf{1 5}$ points) Prove that the regular languages are closed under intersection. In other words, show that if L_{1} and L_{2} are regular languages, then $L_{1} \cap L_{2}$ is regular as well.
4. (25 points): Let $M=\left\{Q,\{a\}, \delta, q_{0}, F\right)$ be a finite automaton. Note that the alphabet for M has only one symbol, a. All strings in $\{a\}^{*}$ have the form a^{m} for some $m \in \mathbb{N}$.
Prove that there are sets $A, B \subset \mathbb{N}$, and an integer, k, such that:

- $\left(a^{m} \in L(M)\right) \Leftrightarrow(m \in A) \vee(\exists i \in B . \exists j \in \mathbb{N} . m=i+j * k)$.

In English, this says that the length of any string in $L(M)$ is either given by an element of A or is the sum of an element of B and a multiple of k.

- Every element of A or B is at most $|Q|$.
- Likewise, $k \leq|Q|$.

Hint: Think of what the state-transition diagram for M must look like, and consider what M does while reading a string, a^{m}.

