
CpSc 421 Homework 1 Due: Sept. 25

1. (25 points): (from Sipser, problem 1.6) Give state diagrams of DFAs recognizing the following languages. In
all parts the alphabet is{0, 1}.

(a) {w | w begins with a 1 and ends with a 0}.

Solution:

1

0 10,1 0
01

(b) {w | w contains at least three 1s}.

Solution:

1
0 0
1 1 0,10

(c) {w | w contains the substring 0101, i.e.,w = x0101y for somex andy}.

Solution:

1

0
1 11 0 0,1

0

0

(d) {w | w has length at least 3 and its third symbol is a 0}.

Solution:

1

10 ,10 0,1

0,1

0,

(e) {w | w starts with 0 and has odd length, or starts with 1 and has even length}.

Solution:

1 ,10
,10

0
2. (30 points): (from Sipser, problem 1.7) Give state diagrams of NFAs withthe specified number of states recog-

nizing each of the following languages. In all parts the alphabet is{0, 1}.

(a) The language of{w | w contains the substring 0101, i.e.,w = x0101y for somex andy} with five states.



Solution:

0,1 1 100 0,1

(b) The language of{w | w contains an even number of 0s, or contains exactly two 1s} with six states.

Solution: I took the phrase “contains an even number of 0s” to mean that any string with an even number
of zeros and any number of ones is in the language. Likewise, Itook “or contains exactly two ones”
to mean any string with exactly two ones and any number of zeros. Here’s my NFA.

0 0 0

ε

ε

1
0

0

1 1

1

You could also take “an even number of 0s” to mean an even number of zeros and nothing else (i.e.
no ones) and likewise for “any number of 1s.” The NFA for that interpretation is the same as the one
above without the self-loops:

1

ε

ε

0

0

1

(c) The language{0} with two states.

Solution:
0

(d) The language0∗1∗0+ with three states.

Solution:
0

1

ε

0 0

(e) The language{ǫ} with one state.

Solution:

(f) The language0∗ with one state.

Solution:

0

Note: 0∗ is a string ofzero or more0s.
0+ is a string ofone or more0s.



3. (25 points): Closure properties of regular languages.

(a) (10 points) Prove that the regular languages are closed under complement. In other words, show that ifL
is a regular language, then the languageL is regular as well.

Solution 1: Construct a DFA.
Let L be a regular language andM = (Q, Σ, δ, q0, F ) be a DFA that recognizesL. Let M =
(Q, Σ, δ, q0, F ). M recognizesL.

Proof 1: As Sipser would say, the construction is obviously correct.Since this is good enough for
Sipser, it’s good enough for a solution in this class.

Proof 2: Let w ∈ Σ∗ be a string.
w ∈ L

⇔ w 6∈ L
⇔ w 6∈ L(M)
⇔ δ(q0, w) 6∈ F
⇔ δ(q0, w) ∈ F
⇔ w ∈ L(M)

Thus, DFAM recognize languageL. BecauseL is recognized by a DFA,L is regular.

Solution 2: Construct a Sequential Circuit.
Let C be a sequential circuit that asserts itsaccept output after reading a string inL. Use an inverter
to produceaccept. Call the resulting circuitC. C is a sequential circuit, and it recognizesL. As
Sipser would say, the correctness of the construction is obvious.
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(b) (15 points) Prove that the regular languages are closed under intersection. In other words, show that ifL1

andL2 are regular languages, thenL1 ∩ L2 is regular as well.

Solution 1: Construct a DFA.
LetL1, L2 ⊆ Σ∗ be regular languages. LetM1 = (Q1, Σ, δ1, q0,1, F1) andM2 = (Q2, Σ, δ2, q0,2, F2)
be a DFAs that recognizeL1 andL2 respectively. As in the proof (from class or Sipser) that regular
languages are closed under union, we will construct a product machine. LetM∩ = (Q∩, Σ, δ∩, q0,∩, F∩)
be a DFA where

Q∩ = Q1 × Q2

δ∩((q1, q2), c) = (δ1(q1, c), δ2(q1, c))
q0,∩ = (q(0,1), q(0,2))
F∩ = {(q1, q2) | (q1 ∈ F1) ∧ (q2 ∈ F2)}

= F1 × F2

M∩ recognizesL1 ∩ L2.

Proof 1: As Sipser would say, the construction is obviously correct.Since this is good enough for
Sipser, it’s good enough for a solution in this class.



Proof 2: Let w ∈ Σ∗ be a string.

w ∈ L1 ∩ L2

⇔ (w ∈ L1) ∧ (w ∈ L2) def. intersection
⇔ (w ∈ L(M1)) ∧ (w ∈ L(M2)) choice ofM1 andM2

⇔ δ1(q0,1, w) ∈ F1) ∧ δ1(q0,2, w) ∈ F2) def.L(DFA)
⇔ (δ1(q0,1, w), δ1(q0,2, w)) ∈ F∩), def.F∩

⇔ δ∩((q0,1, q0,2), w) ∈ F∩), see lemma 1 below
⇔ δ∩(q0,∩, w) ∈ F∩), def.q0,∩

⇔ w ∈ L(M∩), def.L(DFA)

Thus,L(M∩) = L1 ∩ L2. BecauseL1 ∩ L2 is recognized by a DFA,L1 ∩ L2 is regular.
Now, I left one detail for a lemma:

(δ1(q0,1, w), δ1(q0,2, w)) = δ∩((q0,1, q0,2), 2)

I’ll accept a solution that states this is obvious (or just assumes it). The formal proof is by
induction onw:
Base case,w = ǫ:

(δ1(q0,1, w), δ1(q0,2, w)) = (δ1(q0,1, ǫ), δ2(q0,2, ǫ))
= (q0,1, q0,2)
= q0,∩

= δ∩(q0,∩, ǫ)

Induction step,w = x · c, wherex ∈ Σ∗ andc ∈ Σ:

(δ1(q0,1, w), δ1(q0,2, w)) = (δ1(q0,1, x · c), δ2(q0,2, x · c)), w = x · c
= (δ1(δ1(q0,1, x), c), δ2(δ2(q0,1, x), c)), def.δ(q, string)
= δ∩((δ1(q0,1, x), δ2(q0,2, x)), c), def.δ∩
= δ∩(δ∩((q0,1, q0,2), x), c), induction hypothesis
= δ∩(δ∩(q0,∩, x), c), def.q0,∩

= δ∩(q0,∩, w), def.δ(q, string)

Solution 2: Construct a Sequential Circuit.
Let C1 be sequential circuit that asserts itsaccept output after reading a string inL1 and likewise for
C2 andL2. Combine the outputs of these two machines with an AND-gate.Call the resulting circuit
C∩. C∩ is a sequential circuit taht recognizesL1 ∩ L2. As Sipser would say, the correctness of the
construction is obvious.
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Solution 3: Use Closure Properties.

Let L1 andL2 be regular languages. LetL′ = L1 ∪ L2. Because the regular languages are closed
under union (shown in Sipser and lecture) and intersection (shown above),L′ is regular. From De
Morgan’s Law,L′ = L1 ∩ L2. Therefore, the regular languages are closed under intersection.
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Figure 1: How a DFA with one input symbol goes into a loop

4. (25 points): Let M = (Q, {a}, δ, q0, F ) be a finite automaton. Note that the alphabet forM has only one
symbol,a. All strings in{a}∗ have the formam for somem ∈ N.

Prove that there are setsA, B ⊂ N, and an integer,k, such that:

• (am ∈ L(M)) ⇔ (m ∈ A) ∨ (∃i ∈ B. ∃j ∈ N. m = i + j ∗ k) .
In English, this says that the length of any string inL(M) is either given by an element ofA or is the sum
of an element ofB and a multiple ofk.

• Every element ofA or B is at most|Q|.

• Likewise,k ≤ |Q|.

Hint: Think of what the state-transition diagram forM must look like, and consider whatM does while reading
a string,am.

Solution: Let M = (Q, {a}, δ, q0, F ) be a DFA whose input alphabet is{a}. Note that each state,q, of M
has exactly one successor state,δ(q,a). Because the input symbol is alwaysa, I’ll abbreviateδ(q,a) as
δ(q). I’ll write δ2(q) to meanδ(δ(q)), andδk(q) meansk applications ofδ to q.

BecauseQ is finite, we can findm1 andm2 such thatm1 < m1 andδm1(q) = δm2(q). Letk = m2−m1.
Figure 1 illustrates the operation of the DFA and the choice of m1 andm2. Forn ≥ m1 we note that for
anyj ∈ N, δn+j∗k(q0) = δn(q0) (I’ll give a formal proof below). Now, let

A = {i | (i < m1) ∧ (δi(q0) ∈ F )}
B = {i | (m1 ≤ i < m2) ∧ (δi(q0) ∈ F )}

These are theA, B, andk required by the problem.

Proof:

((n ∈ A) ∨ (∃i ∈ B. j ∈ N. n = i + j ∗ k)) ⇒ (an ∈ L(M))
If n ∈ A, then

δ(q0,a
n) = δn(q0) ∈ F

by the definition ofA, andan ∈ L(M). If (∃i ∈ B. j ∈ N. n = i + j ∗ k)), then, choosei ∈ B
andj ∈ N such thatn = i + j ∗ k. Then,

δ(q0,an) = δn(q0)
= δi+j∗k(q0), n = i + j ∗ k
= δ(i, q0), lemma 2 below
∈ F, i ∈ B, def.B

Thus,an ∈ L(M) as required.



(an ∈ L(M)) ⇒ ((n ∈ A) ∨ (∃i ∈ B. j ∈ N. n = i + j ∗ k))
Let n ∈ ⋉ such thatan ∈ L(M). If n < m1, thenn ∈ A by the definition ofA and the claim is
satisfied. Ifm1 ≤ n, then choosei andj with m1 ≤ i < m2 andj ∈ N such thatn = i + j ∗ k.
(Such a choice is always possible. In particular,i = m1 +((n−m1) mod k) andj = (n− i)/k.)
We now have

δ(q0,an) = δn(q0)
= δi+j∗k(q0), n = i + j ∗ k
= δ(i, q0), lemma 2 below
∈ F, an ∈ L(M)

This means thati ∈ B by the definition ofB, and the claim is satisfied.

Lemma 2: Letn ∈ N with n ≥ m1 and letj ∈ N. Thenδn+j∗k(q0) = δn(q0).

Proof: It’s sufficient to show that form1 ≤ n ≤ m2, δn+j∗k(q0) = δn(q0). Here’s why. Let’s
say we’ve got some arbitraryn ≥ m1. Then, we can letn0 = m1 + ((n − m1) mod k), and
j0 = (n − n0)/k (note thatn − n0 is a multiple ofk. Once we’ve shown thatδn0+j∗k(q0) =
δn0(q0), we can conclude that

δn0(q0) = δn0+j0∗k(q0),
= δn(q0)

and δn0(q0) = δn0+(j0+j)∗k(q0)
= δn+j∗k(q0);

thus, δn+j∗k(q0) = δn(q0)

First, we consider the case wheren = m1. We need to prove thatδm1+j∗k(q0) = δm
1 (q0). My

proof is by induction onj.

Base case,j = 0: δm1+j∗k(q0) = δm1+0∗k(q0) = δm1(q0).

Induction step, assume forj, prove forj + 1:

= δm1+(j+1)∗k(q0)
= δk(δm1+j∗k(q0))
= δk(δm1(q0)), induction hypothesis
= δm1+k(q0)
= δm2(q0), def.k
= δm1(q0), choice ofm1 andm2

Now, I’ll look at the general case. Letr = n − m1.

δn+j∗k(q0) = δm1+r+j∗k(q0)
= δr(δm1+j∗k(q0))
= δr(δm1(q0)), shown above
= δm1+r(q0)
= δn(q0)

This completes the proof of lemma 2.

Note: I’ll accept a solution that makes the observation that the machine is in a loop and uses the
length of that loop to definek. A solution does not have to state this as a lemma or give a proof
to receive full credit. I’m gave a proof here for completeness.


