CpSc 421

Homework 0

- 1. (20 points) Recall the inductive definition for the set, S, of all strings in $\{0,1\}^*$ from the September 8 lecture notes: w is in S iff
 - $w = \epsilon$; or
 - There is a string x in S such that w = 0x1 or w = 1x0; or
 - There are strings x and y in S such that w = xy.
 - (a) (10 points) Give an inductive definition for a set, T, that contains all strings that have more 1's than 0's.
 - (b) (10 points) Give a proof that your solution to part (a) is correct.

Hint: You may find it helpful to use S in your definition of T.

- 2. (20 points) Let $\Sigma = \{0, 1, 2\}$. Let $\subseteq \Sigma^* H$ be the language that contains a string w iff
 - $w = \epsilon$; or
 - There are strings x and y in H such that $w \in \{0x1y2, 0x2y1, 1x0y2, 1x2y0, 2x0y1, 2x1y0\}$.
 - (a) (10 points) Prove that for each string, w in H, the number of 0's, 1's and 2's in w are all equal to each other.
 - (b) (10 points) Does *H* contain all strings that have an equal number of 0's, 1's and 2's? Give a short proof for your answer.
- 3. (30 points) Let $\Sigma = \{a, b\}$. Figure 1 depicts three finite state machines that read inputs from this alphabet. Let L_a , L_b , and L_c be the languages accepted by DFA (a), DFA (b), and DFA (c) respectively.
 - (a) (9 points) For each of L_a , L_b , and L_c , list three strings in Σ^* that are in the language and three strings in Σ^* that are not in the language.
 - (b) (12 points) Write a short description of each of the language, L_a , L_b and L_c .
 - (c) (9 points)

Is $L_a = L_b$, $L_a \subset L_b$, $L_a \supset L_b$, or none of these? Is $L_b = L_c$, $L_b \subset L_c$, $L_b \supset L_c$, or none of these? Is $L_a = L_c$, $L_a \subset L_c$, $L_a \supset L_c$, or none of these? Give a short justification of your answers.

Figure 1: Finite state machines for question 3