1. (20 points) Recall the inductive definition for the set, S, of all strings in $\{0,1\}^{*}$ from the September 8 lecture notes: w is in S iff

- $w=\epsilon$; or
- There is a string x in S such that $w=0 x 1$ or $w=1 x 0$; or
- There are strings x and y in S such that $w=x y$.
(a) (10 points) Give an inductive definition for a set, T, that contains all strings that have more 1 's than 0 's.
(b) ($\mathbf{1 0}$ points) Give a proof that your solution to part (a) is correct.

Hint: You may find it helpful to use S in your definition of T.
2. (20 points) Let $\Sigma=\{0,1,2\}$. Let $\subseteq \Sigma^{*} H$ be the language that contains a string w iff

- $w=\epsilon$; or
- There are strings x and y in H such that $w \in\{0 x 1 y 2,0 x 2 y 1,1 x 0 y 2,1 x 2 y 0,2 x 0 y 1,2 x 1 y 0\}$.
(a) (10 points) Prove that for each string, w in H, the number of 0 's, 1 's and 2 's in w are all equal to each other.
(b) (10 points) Does H contain all strings that have an equal number of 0 's, 1's and 2's? Give a short proof for your answer.

3. ($\mathbf{3 0}$ points) Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Figure 1 depicts three finite state machines that read inputs from this alphabet. Let L_{a}, L_{b}, and L_{c} be the languages accepted by DFA (a), DFA (b), and DFA (c) respectively.
(a) (9 points) For each of L_{a}, L_{b}, and L_{c}, list three strings in Σ^{*} that are in the language and three strings in Σ^{*} that are not in the language.
(b) (12 points) Write a short description of each of the language, L_{a}, L_{b} and L_{c}.
(c) ($\mathbf{9}$ points)

Is $L_{a}=L_{b}, L_{a} \subset L_{b}, L_{a} \supset L_{b}$, or none of these?
Is $L_{b}=L_{c}, L_{b} \subset L_{c}, L_{b} \supset L_{c}$, or none of these?
Is $L_{a}=L_{c}, L_{a} \subset L_{c}, L_{a} \supset L_{c}$, or none of these?
Give a short justification of your answers.

DFA (a):

DFA (c):

Figure 1: Finite state machines for question 3

